Manchester Centre for Nonlinear Dynamics

The Manchester Centre for Nonlinear Dynamics is comprised of researchers from the School of Mathematics and the School of Physics and Astronomy at the University of Manchester. Research within the group is based upon the application of a combined approach of theoretical modelling, computation and detailed quantitative experimental investigations of nonlinear phenomena.

Granular jets and hydraulic jumps on an inclined planeMulti-component particle-size segregation in shallow granular avalanchesGravity-driven granular free-surface flow around a circular cylinderRaleigh-Taylor instability in a finite cylinderParticle-size segregation in dense granular avalanchesUnderlying asymmetry within particle size segregationSegregation induced finger formation in granular free-surface flows

Latest News: Work at the MCND on the curling of ribbons has been featured in a BBC News article. For more details see Anne Juel's site or our paper in PNAS.

Features

A symmetry breaking pattern switching phenomenon is observed in 2D granular media under compression. When the undeformed configuration on the left is compressed, rigid cylinders (white) form pairs, resulting from the buckling of columns of elastic cylinders (purple).

Sinuous instability of a confined jet

Left: Passive tracers (shown as streaks) in a confined turbulent momentum jet; middle: corresponding velocity field (arrows) and vorticity field (background) measured using particle image velocimetry; right: schematic of the self-similar unstable sinuous core and alternating side vortices.

Pattern-switching in elastic media.

A pattern switch induced by the compression of a two-dimensional elastic foam. A square array of holes is transformed into an array of ellipses with their major axes arranged in orthogonal directions.

Viscous fingering under an elastic membrane.

Above a critical flow rate of air injection into a oil-filled elastic cell, the interface becomes unstable and an unusual fingering pattern develops.

Bubble oscillation in a constricted tube.

The propagation of an air bubble into a constricted channel initially filled by a viscous fluid can lead to oscillations with a well defined spatial period. Read more...