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Segregation-induced finger formation in
granular free-surface flows

J. L. Baker1,†, C. G. Johnson1 and J. M. N. T. Gray1,†
1School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester,

Oxford Road, Manchester M13 9PL, UK

(Received 19 April 2016; revised 30 September 2016; accepted 12 October 2016)

Geophysical granular flows, such as landslides, pyroclastic flows and snow avalanches,
consist of particles with varying surface roughnesses or shapes that have a tendency to
segregate during flow due to size differences. Such segregation leads to the formation
of regions with different frictional properties, which in turn can feed back on the bulk
flow. This paper introduces a well-posed depth-averaged model for these segregation-
mobility feedback effects. The full segregation equation for dense granular flows is
integrated through the avalanche thickness by assuming inversely graded layers with
large particles above fines, and a Bagnold shear profile. The resulting large particle
transport equation is then coupled to depth-averaged equations for conservation of
mass and momentum, with the feedback arising through a basal friction law that is
composition dependent, implying greater friction where there are more large particles.
The new system of equations includes viscous terms in the momentum balance, which
are derived from the µ(I)-rheology for dense granular flows and represent a singular
perturbation to previous models. Linear stability calculations of the steady uniform
base state demonstrate the significance of these higher-order terms, which ensure
that, unlike the inviscid equations, the growth rates remain bounded everywhere. The
new system is therefore mathematically well posed. Two-dimensional simulations of
bidisperse material propagating down an inclined plane show the development of an
unstable large-rich flow front, which subsequently breaks into a series of finger-like
structures, each bounded by coarse-grained lateral levees. The key properties of the
fingers are independent of the grid resolution and are controlled by the physical
viscosity. This process of segregation-induced finger formation is observed in
laboratory experiments, and numerical computations are in qualitative agreement.

Key words: fingering instability, geophysical and geological flows, granular media

1. Introduction
The process of particle size segregation, whereby mixtures of different sized

particles separate into distinct grain-size classes during flow, can be very pronounced,

† Email addresses for correspondence: james.baker@alumni.manchester.ac.uk,
nico.gray@manchester.ac.uk

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.673
Downloaded from http:/www.cambridge.org/core. IP address: 109.159.110.65, on 12 Nov 2016 at 14:52:45, subject to the Cambridge Core terms of use, available at

mailto:james.baker@alumni.manchester.ac.uk
mailto:nico.gray@manchester.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.673&domain=pdf
http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.673
http:/www.cambridge.org/core


Segregation-induced finger formation in granular free-surface flows 169

with experiments showing rapid vertical segregation into regions of nearly pure small
and large particles (Savage & Lun 1988; Vallance & Savage 2000; Golick & Daniels
2009). When this is combined with periodic deposition it can lead to the formation
of striking alternating stratified layers (Gray & Hutter 1997; Makse et al. 1997; Gray
& Ancey 2009) in heaps as well as petal-like patterns in rotating drums (Hill et al.
1999; Gray & Chugunov 2006; Zuriguel et al. 2006). For dense granular flows, the
dominant physical mechanisms driving segregation are thought to be kinetic sieving
and squeeze expulsion (Middleton 1970; Savage & Lun 1988; van der Vaart et al.
2015). As a polydisperse material is sheared, smaller particles are more likely to be
able to percolate down through cavities that open up, which in turn exerts an upward
force on the larger particles. Several models have been proposed to capture this effect
(e.g. Bridgwater, Foo & Stephens 1985; Savage & Lun 1988; Dolgunin & Ukolov
1995; Gray & Thornton 2005; Gray & Chugunov 2006; Gray & Ancey 2011; Marks,
Rognon & Einav 2012; Gray & Ancey 2015) which all have a similar structure and
describe the evolving particle size distribution for a given bulk flow. A recent review
can be found in Gray, Gajjar & Kokelaar (2015).

Field studies (e.g. Pierson 1986; Iverson 2003; Lube et al. 2007) have provided
strong evidence for the occurrence of particle size segregation in geophysical flows.
In particular, debris flow deposits show self-organisation into leveed channels, with
large particles being vertically segregated to the free surface, sheared to the flow
front and then shouldered aside into coarse-grained static regions (Félix & Thomas
2004; Johnson et al. 2012). The finer material forms a lining on the inside wall
of these lateral levees (Kokelaar et al. 2014), which reduces the friction in the
channel and enhances the mobility of the mixed interior. Experiments at the United
States Geological Survey (USGS) debris flow flume in Oregon, USA (Johnson
et al. 2012) as well as smaller-scale laboratory investigations (Deboeuf et al. 2006;
Goujon, Dalloz-Dubrujeaud & Thomas 2007; Kokelaar et al. 2014) have been able to
reproduce these feedback effects, with runout distances for a bidisperse material being
greater than for either type of particle in pure phase. A related phenomenon is the
formation of segregation-induced fingering instabilities in granular free-surface flows
(Pouliquen, Delour & Savage 1997; Pouliquen & Vallance 1999; Aranson, Malloggi
& Clement 2006; Malloggi et al. 2006; Woodhouse et al. 2012). These studies can
be motivated by field observations of geophysical flows advancing as a series of
lobate structures, for example the pyroclastic currents following the Mount St Helens
eruption in July 1980 (figure 1).

Experiments are carried out using a bidisperse mixture of spherical ballotini (white,
75–150 µm diameter) and angular carborundum (brown, 305–355 µm) flowing
down a plane inclined at 27◦, which is roughened by attaching a single layer of
turquoise ballotini (750–1000 µm) to the base with double-sided tape (figure 2 and
supplementary movie 1 available at https://doi.org/10.1017/jfm.2016.673). Initially
well-mixed material is released from rest using a double gate system with an inflow
height of 2 mm. As it flows down the slope, the large particles are segregated to
the surface and preferentially sheared to the front. This front becomes unstable due
to greater frictional forces and splits into a number of different channels, or fingers,
with the internal structure of each finger resembling that of a single leveed channel.

The time scales associated with this instability are relatively short, with the early
traces of fingers beginning to appear after approximately 1 s. However, fingers only
develop after the segregation of large particles to the free surface and subsequent
accumulation at the front, and hence the fingering time scale must necessarily be
slower than that of particle size segregation. There have been several attempts to
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Fine, more mobile interior

Coarse-rich flow head

~10 m

Lateral levees channelise the flow,
and enhance run-out distance

FIGURE 1. Pyroclastic flow deposits from the eruption of Mount St Helens on July 22nd
1980 showing evidence of particle size segregation and finger formation during runout
(Photo courtesy Dan Miller and USGS).

calculate this segregation rate, for example in large-scale experimental debris flows,
where Johnson et al. (2012) found large particles rising at approximately 3.5 cm s−1,
or 1 % of the typical bulk downslope velocity. In laboratory experiments of dry
glass beads, Wiederseiner et al. (2011) measured percolation rates of 1.5 mm s−1,
compared to average bulk velocities of 30 mm s−1. This ratio is consistent with
the discrete element model (DEM) simulations used by Staron & Phillips (2014) to
calculate segregation time scales. Such segregation rates suggest that these thin flows
(less than 2 mm, or approximately 10 particle diameters) rapidly segregate before the
onset of the fingering instability.

There is an important distinction to be made between two different finger formation
regimes that occur for different inflow conditions. For the experiments shown in
figure 2 and movie 1, large quantities of granular material are loaded into the hopper,
meaning grains are supplied at a constant flux for the entire observed duration. The
resulting fingers are bounded by coarse-rich levees, and also have regions of pure
carborundum at the rear of each channel wall, which are eroded by oncoming material
from the inflow. This erosion process is particularly apparent in movie 1, where it can
be seen that the ‘large particle islands’ creep downslope in a series of discrete surges.
These islands move more slowly than the flow front, leading to finger elongation,
although levees of adjacent fingers typically remain in contact. Figure 3(a) shows
a close up of the experimental frontal zone, and a schematic of this behaviour is
given by figure 4(a). The continuous inflow regime is representative of early fingering
instability experiments (Pouliquen et al. 1997; Pouliquen & Vallance 1999), whereas
later work (Woodhouse et al. 2012; Gray et al. 2015) used only a finite amount of
material in the hopper. In this case the initial onset of finger formation is identical,
but as the inflow stops and the supply wanes, erosion of the large particle islands
ceases. These stationary regions then act as a barrier between adjacent channels,
preventing contact and allowing distinct separated fingers to form as the remainder of
the material lengthens the pre-existing fingers (figures 3b and 4b). This final phase
can lead to unexpectedly long run-out distances, such as in figure 1, before eventually
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~5 cm

FIGURE 2. Experiments on a plane inclined at 27◦ using 80 % ballotini (white,
75–150 µm), 20 % carborundum (brown, 305–355 µm) released from rest through a
double gate system of inflow thickness 2 mm. The chute is roughened with turquoise
ballotini (750–1000 µm). Images show snapshots at approximate times t= 0.9 s, t= 2.6 s,
t= 4.1 s, t= 6.0 s and t= 7.9 s. Supplementary movie 1 available online.

coming to rest and revealing the lubricating fine-grained levee lining (Kokelaar et al.
2014).

Continuously supplied experiments are also conducted using a monodisperse flow
of small ballotini (figure 5 and supplementary movie 2). There are some small
irregularities as the front advances, most likely due to imperfections of the inflow
layer and on the channel bed, as well as the formation of roll waves, but the same
finger structures do not form and propagation is approximately uniform across the
slope. This is consistent with the work of Pouliquen (1999b), who showed that a
monodisperse granular front flows with a constant velocity and well-defined shape
on a rough inclined plane. The process of finger formation is therefore driven by
particle size segregation. Note that experiments using pure large particles do not flow
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~5 cm

~5 cm

(a)

(b)

FIGURE 3. Close ups of the experimental flow fronts for (a) a continuous supply of
particles from the inflow gate and (b) a finite release of granular material, where the
supply has already been cutoff. In both cases a bidisperse mixture of 80 % white ballotini
(75–150 µm), 20 % brown carborundum (305–355 µm) is used and the inflow thickness
is 2 mm.

at this slope inclination of 27◦ because the angular carborundum in pure phase is
too resistive. This highlights another key component of the instability mechanism,
which requires the larger particles to have a higher effective friction coefficient than
the smaller ones. In natural flows, the interstitial pore pressure is dissipated more
rapidly through large particles, meaning that large-particle-rich regions experience
greater frictional forces, even if the particles themselves are not more angular like
in the experiments shown here (Iverson 1997; Johnson et al. 2012). The equivalent
experiments have also been carried out using a bidisperse mixture of different sized
spheres and a frontal instability does still form, although the resulting fingers have
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Continuous inflow Finite inflow

Eroding
material

Contact between
adjacent levees

Static
material

Grain-free regions

(a) (b)

FIGURE 4. Schematic illustrating the difference between the initial onset of finger
formation and fully developed fingers. (a) A continuous supply of material from the inflow
gate causes the large particles at the back of the levees to be slowly eroded and move
downstream. The front of the fingers propagates faster, meaning they lengthen over time,
and adjacent fingers remain in contact with each other. (b) When the inflow is cutoff the
regions at the rear of the levees come to rest and all remaining material flows down the
pre-established channels. This leads to elongated distinct fingers with grain-free zones in
between, which will eventually arrest as the flow wanes. In both diagrams shaded regions
correspond to coarse-rich areas and dotted lines denote extent of the fingers at an earlier
time.

weaker, less stable levee walls. In this case the geometrical properties of the two
spherical species are the same, but the large particles are slightly more resistive due
to their interaction with the bed roughness (Goujon, Thomas & Dalloz-Dubrujeaud
2003). On the other hand, the fingering instability does not form in experiments
using rough small particles and smooth large grains, where it is found that the larger
particles shear off the top of the fines, which are deposited on the chute without the
formation of fingers.

The above observations suggest that any theoretical model should account for both
the bulk flow and the effect of particle size segregation, in particular the relative
frictional differences. Pouliquen & Vallance (1999) proposed a model for these
segregation-mobility feedback effects in bidisperse granular flows based on their
experimental work. Depth-averaged mass and momentum balance equations were
coupled to the depth-averaged concentration (representing the distribution of large
and small particles) through a basal friction law that was weighted according to the
evolving composition. However, this work did not explicitly model the size-segregation
process, instead prescribing an initial concentration distribution and allowing it
to be advected with the bulk flow. The work of Gray & Kokelaar (2010a,b) in
depth integrating previous three-dimensional segregation equations (e.g. Gray &
Thornton 2005) allowed the development of fully coupled avalanche-segregation
models. This was exploited by Woodhouse et al. (2012), where the coupling was
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~5 cm

FIGURE 5. Experiments on a plane inclined at 27◦ using monodisperse granular material
consisting of 100 % ballotini (75–150 µm) released from rest through a double gate
system of inflow thickness 2 mm. Images show snapshots at approximate times t =
0.4 s, t = 1.7 s, t = 3.0 s, t = 4.3 s and t = 5.7 s. Note the time scales are shorter
than the equivalent bidisperse experiments (figure 2) as pure small particles travel faster.
Supplementary movie 2 available online.

achieved through a concentration-dependent version of Pouliquen’s (1999a) friction
law. This model was able to capture the qualitative features of spontaneous leveed
finger formation, but the authors showed that, at a critical concentration, the equations
were mathematically ill posed in the sense of Joseph & Saut (1990), i.e. a linear
stability analysis produced unbounded growth rates in the high wavenumber limit.
The critical Froude number at which this occurred corresponded to where one of
the characteristics of the shallow water equations coincided with that from the large
particle transport equation (Gray & Kokelaar 2010a,b) and the system loses strict
hyperbolicity. Consequently, at a specific concentration any numerical grid-scale noise
grows unboundedly as the grid size tends to zero and the ill posedness manifests
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itself in the form of grid-dependent simulations, with the number of fingers being
governed by the numerical viscosity.

The Woodhouse et al. (2012) model suggests that additional physics is required to
regularise the depth-averaged governing equations. Gray & Edwards (2014) recently
devised a strategy to achieve this using the µ(I)-rheology for dense granular flows
(GDR MiDi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen 2005, 2006).
To leading order, they showed that this three-dimensional constitutive law only
contributed via an effective basal friction, equivalent to the dynamic friction law for
rough beds (Pouliquen 1999a; Pouliquen & Forterre 2002), and the depth-averaged
equations reduce to a standard hyperbolic avalanche model (e.g. Gray, Tai & Noelle
2003). Using the steady uniform Bagnold velocity and lithostatic pressure profiles
(GDR MiDi 2004) they were able to include the gradient of the depth-averaged
in-plane deviatoric stress into the downstream momentum balance. These higher-order
viscous terms represent a singular perturbation to the system and in many situations
they can be neglected. However, strong evidence for their inclusion is provided by
roll waves, where the standard shallow water avalanche equations are unable to
predict the cutoff frequency observed in experiments (Forterre & Pouliquen 2003).
With viscous terms, the depth-averaged µ(I)-rheology is able to predict this cutoff
for a wide range of Froude numbers and slope angles without any fitting parameters
(Gray & Edwards 2014).

In addition, Edwards & Gray (2015) showed that the extra terms play a crucial role
in the formation of steadily propagating erosion–deposition waves on erodible beds.
Baker, Barker & Gray (2016) recently proposed a two-dimensional extension of the
equations to account for lateral variation, and applied the model to steady uniform
channel flows. The generalised viscous terms give rise to downslope velocities with
cross-slope profiles, another physical feature not captured by classical shallow-water
models. These very promising results for monodisperse flows suggest that Gray
& Edwards’ (2014) depth-averaged µ(I)-rheology could provide the dissipative
mechanism to regularise the depth-averaged segregation-mobility feedback equations.
This paper therefore describes how to generalise their work into a bidisperse set-up,
and shows that the resulting model is mathematically well posed. A two-dimensional
(downslope and lateral) extension of the system of equations, based on the work of
Baker et al. (2016), admits numerical solutions showing the formation of fingering
instabilities on an inclined plane, with the key finger characteristics being independent
of the grid resolution and controlled by the newly introduced physical viscosity.

2. A depth-averaged model for particle size-segregation

Consider a Cartesian coordinate system Oxz with the x-axis pointing downslope
at an angle ζ to the horizontal and the z-axis being the upward pointing normal
(figure 6). A bidisperse mass of granular material is assumed to lie between a free
surface at z= s(x, t) and rigid base at z= b(x), so that the flow thickness is h(x, t)=
s − b. Denoting the volume fraction of small particles as φ ∈ [0, 1] (so that the
proportion of large particles is 1− φ), the evolving concentration distribution can be
modelled by a general segregation-diffusive-remixing equation (e.g. Bridgwater 1976;
Savage & Lun 1988; Dolgunin & Ukolov 1995; Gray & Chugunov 2006; Gray &
Ancey 2011; Gajjar & Gray 2014),

∂φ

∂t
+ ∂

∂x
(φu)+ ∂

∂z
(φw)− ∂

∂z
(Q(φ))= ∂

∂z

(
D
∂φ

∂z

)
, (2.1)
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z

x

0

FIGURE 6. A schematic diagram of the coordinate axes Oxz inclined at an angle ζ to
the horizontal, so that the x-axis points downslope and the z-axis is the upward pointing
normal. The granular material lies between the base z= b(x) and free surface z= s(x, t),
giving a flow thickness h(x, t)= s− b. At z= l(x, t) there is an interface separating a layer
of pure small particles (φ= 1) of thickness η(x, t)= l− b at the bottom of the flow from
a layer of pure large particles (φ = 0) lying on top.

where the bulk velocity u has components (u, w) in the downslope and normal
directions respectively. The first three terms on the left-hand side represent the
advection of the concentration with the bulk flow, whereas the fourth term accounts
for vertical segregation. The flux function Q(φ)> 0 satisfies Q(0)=Q(1)= 0 to ensure
the segregation mechanism shuts off in the monodisperse limits. Different functional
forms for Q have been proposed, including a simple quadratic Q(φ) = qφ(1 − φ),
(Gray & Thornton 2005) or skewed cubic Q(φ) = qφ(1 − φ)(1 − γφ), (Gajjar &
Gray 2014; van der Vaart et al. 2015) the latter being motivated by experimental
observations of asymmetric segregation, which has also been found from discrete
particle method simulations (Tunuguntla, Bokhove & Thornton 2014). The exact
dependence will not be important in this paper. The right-hand side of (2.1) represents
diffusive remixing, where the diffusivity D may, in general, depend on the flow
variables.

The segregation equation (2.1) is subject to kinematic boundary conditions,

ub
∂b
∂x
−wb = 0, at z= b(x), (2.2)

∂s
∂t
+ us

∂s
∂x
−ws = 0, at z= s(x, t), (2.3)

where subscripts b and s denote evaluation of the velocity field at the base and free
surface respectively. In addition, there is no flux of either large or small particles
across the boundaries, i.e.

Q(φ)+D
∂φ

∂z
= 0, at z= b(x) and z= s(x, t). (2.4)
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Following Gray & Kokelaar (2010a,b), the segregation-diffusive-remixing equation
(2.1) may be integrated through the avalanche thickness using Leibniz’ rule
(Abramowitz & Stegun 1970) to interchange the order of differentiation and
integration, giving

∂

∂t
(hφ̄)+ ∂

∂x
(hφu)−

[
φ

(
∂z
∂t
+ u

∂z
∂x
−w

)]s

b

=
[

Q(φ)+D
∂φ

∂z

]s

b

, (2.5)

where

φ̄ = 1
h

∫ s

b
φ dz, φu= 1

h

∫ s

b
φu dz, (2.6a,b)

are the depth-averaged small particle concentration and small particle flux respectively.
The kinematic and no-flux boundary conditions (2.2)–(2.4), ensure that the square-
bracketed terms disappear and the depth-integrated segregation equation (2.5) reduces
to

∂

∂t
(hφ̄)+ ∂

∂x
(hφu)= 0. (2.7)

The model is closed by deriving expressions relating the depth-averaged concentration
flux to the depth-averaged downslope velocity, the latter being defined analogously to
(2.6) as

ū(x, t)= 1
h

∫ s

b
u(x, z, t) dz. (2.8)

Since bidisperse flows have been observed to rapidly segregate into inversely graded
layers (Gray & Hutter 1997; Gray & Ancey 2009), Gray & Kokelaar (2010a,b)
suggested using a concentration profile

φ =
{

0, l< z< s,
1, b< z< l,

(2.9)

representing a layer of pure small particles lying on top of a layer of pure large
particles, where z= l(x, t) denotes the height of the separating interface. In addition,
the bulk velocity is assumed to take the form

u(x, z, t)= ū(x, t)f (ẑ), (2.10)

where ẑ = (z − b)/h is the rescaled vertical coordinate and f is the vertical shear
profile, which should be an increasing function to ensure surface velocities are
greater than those at the base and should also satisfy∫ 1

0
f (ẑ) dẑ= 1, (2.11)

to be consistent with the definition (2.8). Gray & Kokelaar (2010a,b) used families
of linear shear profiles given by

f (ẑ)= fL(ẑ)≡ α + 2(1− α)ẑ, (2.12)
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to derive their depth-averaged segregation equation, where the parameter α ∈ [0, 1]
controls the relative amount of shear and basal slip. These were also employed by
Johnson et al. (2012) to reconstruct the full velocity field at the USGS flume. Whilst
simple linear profiles capture the basic features of the flow, a more physically accurate
choice is the Bagnold velocity profile,

f (ẑ)= fB(ẑ)≡ 5
3(1− (1− ẑ)3/2), (2.13)

which can be derived as the steady uniform solution to the three-dimensional
µ(I)-rheology for granular flows (e.g. GDR MiDi 2004; Gray & Edwards 2014).
Substituting the inversely graded concentration (2.9) and velocity profile (2.10) into
the flux integral in (2.6) gives

φu= 1
h

∫ l

b
u dz= ū

∫ φ̄

0
f (ẑ) dẑ, (2.14)

which may then be inserted into the depth-integrated segregation equation (2.7) to
give

∂

∂t
(hφ̄)+ ∂

∂x
(hφ̄ū)− ∂

∂x
(hūG(φ̄))= 0, (2.15)

where

G(φ̄)= φ̄ −
∫ φ̄

0
f (ẑ) dẑ. (2.16)

The first two terms in (2.15) represent advection of the depth-averaged concentration
with the bulk flow, and the third term captures the preferential shearing of the large
particles to the flow front (the minus sign implies that fines are transported to the
rear). For this reason it is referred to as the ‘large particle transport equation’ and is a
more general version of that derived by Gray & Kokelaar (2010a,b) and Woodhouse
et al. (2012). The form of the ‘transport function’ G depends on the choice of shear
profile, with the linear shear profile (2.12) leading to the quadratic

G(φ̄)=GL(φ̄)≡ (1− α)φ̄(1− φ̄), (2.17)

as in Gray & Kokelaar (2010a), and the Bagnold shear profile (2.13) giving

GB(φ̄)≡ 2
3(1− φ̄)(1− (1− φ̄)3/2). (2.18)

The functions (2.17) and (2.18) have similar forms, with both satisfying G(0)=G(1)=
0, meaning the concentration is simply advected at the same speed as the bulk flow
in both of the monodisperse limits. The Bagnold transport function (2.18) is skewed
slightly towards smaller concentrations of small particles. However, the difference is
relatively small (<7 % of the maximum amplitude) and (2.18) may be approximated
using a quadratic of the form (2.17) (figure 7). A value α = 1/7 is chosen to
ensure that the total area under the two curves, and hence the mean transport rate
across all different concentrations, is the same, and such a fitted quadratic for G
shall be assumed throughout this paper. This makes subsequent computations more
straightforward, since the (1 − φ̄)3/2 term in (2.18) results in complex values if
round-off errors cause φ̄ to be slightly greater than unity. Though the linear profile
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FIGURE 7. (a) Plots of the linear (2.12) and Bagnold (2.13) shear profiles f (ẑ). (b) The
corresponding transport functions G(φ̄) given by (2.17) and (2.18) respectively. The value
α = 1/7 is chosen for the linear profiles so that the area under the curves in (b) is the
same.

(2.12) with α = 1/7 is qualitatively different to the Bagnold shear (2.13) due to the
non-zero basal slip velocity, the remainder of this work does not distinguish between
the velocity at different vertical positions, meaning this simplification is appropriate
when dealing with depth-averaged quantities.

Note the similar structure of the original segregation equation (2.1) and the large
particle transport equation (2.15), with the vertical segregation in the former being
replaced by lateral segregation in the latter. Also note that it is possible to reformulate
(2.15) in terms of the small particle layer thickness, η(x, t) = l − b, using the fact
that η= hφ̄, or the thickness of the large particle layer, κ(x, t)= h− η, as described
in Gray & Kokelaar (2010a,b). Here it shall be left in terms of the depth-averaged
concentration of small particles φ̄ because this is more representative of what would
actually be seen in overhead views of bidisperse experiments.

3. Segregation-mobility coupling
The large particle transport equation (2.15) may be solved for the depth-averaged

concentration φ̄ for a prescribed flow thickness h and bulk velocity ū (e.g. Gray
& Kokelaar 2010a,b). In some cases h and ū can be inferred from experimental
measurements (Johnson et al. 2012) but typically they are unknown and need to
be solved for as part of the problem. Furthermore, it is expected that the evolving
concentration distribution will feed back on the bulk motion and this coupling
should be built into the model. The equations representing conservation of mass and
momentum for the bulk flow are (Gray & Edwards 2014)

∂h
∂t
+ ∂

∂x
(hū)= 0, (3.1)

∂

∂t
(hū)+ ∂

∂x
(χhū2)+ ∂

∂x

(
1
2

gh2 cos ζ
)
= ghS+ ∂

∂x

(
νh3/2 ∂ ū

∂x

)
, (3.2)

where g is the constant of gravitational acceleration. The shape factor χ = u2/ū2 in
(3.2) depends on the form of the velocity profile with depth. The Bagnold profile
(2.13) gives a value χ = 5/4 but it shall be assumed that χ = 1 for simplicity,
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since non-unity values change the characteristic structure of the inviscid equations
and cause problems near zero-thickness regions (Hogg & Pritchard 2004). This is
common across the granular flow literature (Grigorian, Eglit & Iakimov 1967; Savage
& Hutter 1989; Gray, Wieland & Hutter 1999; Pouliquen & Forterre 2002), even
though it is formally inconsistent with the sheared velocity profile. The source terms
S are due to a combination of gravity, effective basal friction and changes in basal
topography (e.g. Gray et al. 2003),

S= cos ζ
(

tan ζ −µbsgn(ū)− ∂b
∂x

)
, (3.3)

where sgn is the sign function and ensures friction always opposes the direction of
motion. The effective basal friction coefficient µb provides a mechanism to incorporate
segregation-mobility feedback effects into the governing equations. As noted in § 1,
the different species of particle have different frictional properties, and for fingers to
develop it is required that the larger particles experience greater resistance to motion.
This is accounted for by taking a concentration-weighted sum (e.g. Pouliquen &
Vallance 1999; Woodhouse et al. 2012),

µb(h, Fr, φ̄)= φ̄µS
b(h, Fr)+ (1− φ̄)µL

b(h, Fr), (3.4)

where

µS
b(h, Fr) < µL

b(h, Fr), (3.5)

are the basal friction coefficients for smooth small and frictional large particles,
respectively, and are written as functions of thickness and Froude number,

Fr= |ū|√
gh cos ζ

. (3.6)

It is assumed that the friction laws for the individual constituents are given by the
dynamic friction law of Pouliquen & Forterre (2002),

µN
b (h, Fr)=µN

1 +
µN

2 −µN
1

(βN h)/(LN Fr)+ 1
, Fr>βN , (3.7)

where N = S,L denotes small or large particles, respectively. The values µN
1 = tan ζN1

and µN
2 = tan ζN2 are constants, where angles ζN1 and ζN2 correspond to the minimum

and maximum slope angles for which steady uniform flows are observed for a
monodisperse material of constituent N . The length scales LN and dimensionless
constants βN are found empirically, and may depend on both the granular material
and bed composition. These constants are estimated for the laboratory set-up of
figures 2–5, and are given in table 1, along with the other parameters that are kept
constant in this paper.

Strictly speaking, the individual basal friction laws (3.7) only hold providing Fr>
βN . For slower flows the extended law of Pouliquen & Forterre (2002) should be
implemented, which accounts for arresting and static regions (see e.g. Johnson & Gray
2011; Edwards & Gray 2015). For simplicity it shall be assumed that (3.7) is valid
everywhere for both types of particle. The implications of this assumption will be
discussed in §§ 6 and 7.
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ζ = 27.0◦ ζ S
1 = 20.0◦ ζ S

2 = 30.0◦ βS = 0.150 LS = 2.0× 10−4 m
χ = 1 ζ L

1 = 29.0◦ ζ L
2 = 40.0◦ βL = 0.72 LL = 5.0× 10−4 m

TABLE 1. Material parameters that will remain constant throughout this paper.

The form of the final viscous term in the momentum equation (3.2) is motivated
by the work done by Gray & Edwards (2014) for monodisperse flows, who used
the µ(I)-rheology (GDR MiDi 2004; da Cruz et al. 2005; Jop et al. 2005, 2006)
to incorporate more of the specific material properties into the depth-averaged
governing equations. They showed that, to leading order, the µ(I)-rheology only
contributes via the basal friction coefficient, which is equivalent to (3.7). The resulting
shallow-water-like equations are similar to those that have been successfully used in
many granular flow configurations (Grigorian et al. 1967; Pouliquen 1999b; Gray
et al. 2003). Higher-order viscous terms were introduced using the steady-state
Bagnold velocity profile and lithostatic pressure distribution to derive an expression
for the depth-averaged in-plane deviatoric stress, which Gray & Edwards (2014) then
wrote in the same form as in (3.2) using the relationship between the depth-averaged
Bagnold velocity and flow thickness. In this formulation, νh1/2/2 may be interpreted
as the kinematic viscosity, which acts, in the depth-integrated momentum balance
equation, on the gradient term h∂ ū/∂x. Gray & Edwards (2014) were able to write
the controlling coefficient ν = νN explicitly in terms of the friction parameters of the
monodisperse material as

νN = 2LN√g
9βN

sin ζ√
cos ζ

(
µN

2 − tan ζ
tan ζ −µN

1

)
, ζN1 < ζ < ζN2 . (3.8)

For the bidisperse flows being considered here it might be sensible to choose

ν = ν(φ̄)= φ̄νS + (1− φ̄)νL, (3.9)

in an analogous manner to (3.4), where νS and νL are the coefficients for small and
large particles and are given by (3.8). However, the coefficients νS and νL are only
valid for slope angles ζN1 <ζ <ζN2 , where steady uniform flows are possible. Outside
of this range the coefficient of viscosity is negative, and therefore the monodisperse
depth-averaged theory is ill posed and must be regularised. This reflects the underlying
ill posedness of the µ(I)-rheology (Barker et al. 2015). In order to get levee and
finger formation the slope angle must be such that large particles in pure phase are
brought to rest, whilst small particles and mixtures may still flow, i.e.

ζ S
1 < ζ < ζ

L
1 < ζ

S
2 < ζ

L
2 . (3.10)

In this range the coefficient of viscosity for large particles is undefined, and it is not
currently clear how to extend (3.8) to all slope angles. Instead of using (3.8) and (3.9),
a constant bulk value ν > 0 is imposed in this paper, which may now be considered
as a free parameter. The effect of changing this constant will be investigated and
discussed.

The large particle transport equation (2.15), together with the mass and momentum
balances (3.1), (3.2), define a fully coupled system for the flow thickness and
depth-averaged velocity and concentration. Segregation-mobility feedback effects
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are achieved through the effective basal friction in the momentum equation (3.2),
with higher concentrations of large particles resulting in greater friction. From the
monodisperse expressions it is known that the viscous terms are typically small in
magnitude compared to the standard shallow-water contributions. The importance
of these terms should not be underestimated, however, as they represent a singular
perturbation to the inviscid equations (Woodhouse et al. 2012) which are ill posed
at a critical Froude number. It will be shown here that the inclusion of viscosity is
sufficient to regularise the equations.

4. Steady uniform flows
A simple solution to the system of equations (2.15), (3.1) and (3.2) is given by

h= h0, ū= ū0, φ̄ = φ̄0, (4.1a−c)

for constants h0 > 0, ū0 > 0, φ̄0 ∈ [0, 1]. This represents a steady, fully developed
flowing layer. Upon substitution into the governing equations, conservation of mass
(3.1) and the large particle transport equation (2.15) are automatically satisfied.
Assuming there are no topography gradients, the momentum equation (3.2) reduces
to a force balance between gravity and basal friction,

tan ζ =µb(h0, F, φ̄0), (4.2)

where

F= Fr0 = ū0√
gh0 cos ζ

, (4.3)

is the steady uniform Froude number. Treating h0 and φ̄0 as known control parameters,
equation (4.2) can be solved for F as a function of thickness and concentration.
Substituting the friction law (3.4) and (3.7) into the force balance (4.2) leads to the
quadratic equation

AF2 + Bh0F+Ch2
0 = 0, (4.4)

where the coefficients are given by

A(φ̄0)= φ̄0µ
S
2 + (1− φ̄0)µ

L
2 − tan ζ , (4.5)

B(φ̄0)= φ̄0(MSµS
1 +MLµS

2)+ (1− φ̄0)(MSµL
2 +MLµL

1)− (MS +ML) tan ζ , (4.6)

C(φ̄0)= (φ̄0µ
S
1 + (1− φ̄0)µ

L
1 − tan ζ )MSML, (4.7)

with MN = βN /LN . For a slope angle in the range given by (3.10), it can be seen
that A(φ̄0) > 0 for all φ̄0 ∈ [0, 1], whereas C(φ̄0) > 0 for φ̄0 < φ̄

∗
0 and C(φ̄0) < 0 for

φ̄0 > φ̄
∗
0 , where

φ̄∗0 =
µL

1 − tan ζ
µL

1 −µS
1
. (4.8)

Consequently, the steady-state Froude number, found by taking the positive root of
(4.4),

F= h0

(
−B+√B2 − 4AC

2A

)
, (4.9)
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FIGURE 8. Contour plots of the steady uniform Froude number F(h0, φ̄0), given by (4.9).
The shaded regions represent where φ̄0 < φ̄

∗
0 (given by (4.8)), meaning there are too many

frictional large particles for steady uniform flow.

is only positive providing that φ̄0 > φ̄
∗
0 , meaning steady uniform flow is not possible

if there are too many frictional large particles. Figure 8 shows a contour plot of the
two-parameter family of steady states F(h0, φ̄0), along with the regions where φ̄0< φ̄

∗
0 .

In the pure small limit (φ̄0 = 1) the expression (4.9) reduces to that given in Gray &
Edwards (2014),

F= F(h0)= MSh0(tan ζ −µS
1)

µS
2 − tan ζ

, (4.10)

which can also be derived from the more straightforward force balance, tan ζ =
µS

b(h0, F). The corresponding steady uniform velocities ū0(h0, φ̄0) may be recovered
from the Froude number (4.9) using the relation (4.3). As a final point, the inclusion
of higher-order terms into the momentum balance (3.2) does not change the
steady-state values derived above, allowing direct comparisons to be made with
the inviscid equations in subsequent sections.

5. Linear stability analysis
5.1. Non-dimensionalisation

Assume the values h0 and φ̄0 are chosen such that a steady state h= h0, φ̄ = φ̄0, ū=
ū0(h0, φ̄0) > 0 exists with corresponding Froude number F > 0, as described in the
previous section. It is then convenient to introduce the scalings

h= h0ĥ, ū= ū0 ˆ̄u, x= h0x̂, t= h0

ū0
t̂, (5.1a−d)
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where the hats denote dimensionless quantities. Note that the depth-averaged
concentration φ̄ is already non-dimensional. Using these scalings, the governing
equations may be written as

∂h
∂t
+ ∂

∂x
(hū)= 0, (5.2)

F2h
(
∂ ū
∂t
+ ū

∂ ū
∂x

)
+ h

∂h
∂x
= h

(
tan ζ −µb(h, ū, φ̄)

)+ F2

R
∂

∂x

(
h3/2 ∂ ū

∂x

)
, (5.3)

h
(
∂φ̄

∂t
+ ū

∂φ̄

∂x

)
− ∂

∂x
(hūG(φ̄))= 0, (5.4)

where the hats have been dropped for brevity and conservation of mass (5.2) has been
used to simplify the momentum and large particle transport equations, (5.3) and (5.4)
respectively. In (5.3) it has also implicitly been assumed that ū> 0. The basal friction
coefficient is now written in terms of the non-dimensional variables as

µb(h, ū, φ̄)= φ̄µS
b(h, ū)+ (1− φ̄)µL

b(h, ū), (5.5)

where the individual friction coefficients for each type of particle are given by

µN
b (h, ū)=µN

1 +
µN

2 −µN
1

(γN h3/2)/ū+ 1
, (5.6)

for constants γN = (βN h0)/(LN F). The granular Reynolds number in (5.3) is defined
as

R= ū0
√

h0

ν
, (5.7)

and will typically take large values since the viscous terms are small in magnitude
compared to the standard shallow-water contributions, as shown by Gray & Edwards
(2014). The Reynolds number is a function of both steady uniform flow thickness h0
and concentration φ̄0.

5.2. Linearised equations and the characteristic polynomial
By construction, there is a one-parameter family of steady-state solutions to (5.2)–(5.4)
given by h= 1, ū= 1, φ̄= φ̄0, and so the variables are perturbed about this base state,

h(x, t)= 1+ h1(x, t), |h1| � 1, (5.8)
ū(x, t)= 1+ ū1(x, t), |ū1| � 1, (5.9)
φ̄(x, t)= φ̄0 + φ̄1(x, t), |φ̄1| � 1. (5.10)

The linearised governing equations then become

∂h1

∂t
+ ∂h1

∂x
+ ∂ ū1

∂x
= 0, (5.11)

F2

(
∂ ū1

∂t
+ ∂ ū1

∂x

)
+ ∂h1

∂x
=−(h1µh + ū1µū + φ̄1µφ̄)+ F2

R
∂2ū1

∂x2
, (5.12)
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∂φ̄1

∂t
−G0

(
∂h1

∂x
+ ∂ ū1

∂x

)
+ (1−G′0)

∂φ̄1

∂x
= 0, (5.13)

where the simplified notation

G0 ≡G(φ̄0)= 6
7 φ̄0(1− φ̄0), G′0 ≡G′(φ̄0)= 6

7(1− 2φ̄0), (5.14a,b)

has been introduced to denote the steady-state values of the transport function and its
derivative. The basal friction law contributes via terms

µh = ∂µb

∂h

∣∣∣∣
(1,1,φ̄0)

=−3
2

(
φ̄0Γ

S + (1− φ̄0)Γ
L
)
< 0, (5.15)

µū = ∂µb

∂ ū

∣∣∣∣
(1,1,φ̄0)

= φ̄0Γ
S + (1− φ̄0)Γ

L > 0, (5.16)

µφ̄ = ∂µb

∂φ̄

∣∣∣∣
(1,1,φ̄0)

=µS
b(1, 1)−µL

b(1, 1) < 0, (5.17)

where the positive constants Γ S, Γ L, are given by

Γ N = γ
N (µN

2 −µN
1 )

(1+ γN )2
, (5.18)

for N = L, S. Now seek normal mode solutions of the form

(h1, ū1, φ̄1)= (H,U, Φ)eσ teikx, (5.19)

where, for temporal stability analysis, the wavenumber k is real and σ(k)= σR(k)+
iσI(k) is complex. Substituting this ansatz into the linearised equations (5.11)–(5.13)
allows the system to be written as an eigenvalue problem

AW = σW, (5.20)

where W = (H,U, Φ)T and the matrix A is given by

A=


−ik −ik 0

−µh

F2
− ik

F2
−µū

F2
− ik− k2

R
−µφ̄

F2

ikG0 ikG0 ik(G′0 − 1)

 . (5.21)

Equation (5.20) has non-zero solutions for W if and only if |A− σ I| = 0, (where I is
the 3× 3 identity matrix) leading to a cubic characteristic polynomial

f (σ )≡ f0 + f1σ + f2σ
2 + σ 3 = 0, (5.22)

where the coefficients f0, f1 and f2 are functions of the wavenumber k and base state,
and are given in appendix A. Equation (5.22) can be solved to give three roots σ (1),
σ (2), σ (3) with corresponding real parts σ (1)R , σ (2)R , σ (3)R . The growth rate σM is then
given by the maximum of these values,

σM =max (σ (1)R , σ
(2)
R , σ

(3)
R ). (5.23)

If σM(k) < 0 for all values of k then all perturbations decay exponentially in time and
the base state is linearly stable. On the other hand, if there exists a wavenumber such
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FIGURE 9. Plots of the growth rates σM(k) for both the inviscid and viscous equations.
(a) When F < Fc both growth rates are positive for all wavenumbers k, meaning that
perturbations grow in time and the base state is unstable. In the large wavenumber limits
the inviscid curves tend to a positive constant (5.30) (dash-dot lines), whereas the viscous
values decay to zero according to the asymptotics (5.34), giving an internal maximum σMax
at finite wavenumber kM. (b) For F>Fc the inviscid values tend to the constant (5.29) as
k−→∞. In the viscous case there is an internal maximum as well as a cutoff wavenumber
kc, above which all perturbations are stable. The different cases are established by fixing
the depth-averaged concentration φ̄0= 0.8, giving a critical Froude number Fc= 1.94, and
varying the flow thickness h0. The values h0 = 2 mm and h0 = 3 mm give corresponding
Froude numbers F= 1.57 and F= 2.36 for (a) and (b) respectively. The coefficient in the
effective viscosity is set to be ν = 0.001 m3/2 s−1, but qualitatively similar behaviour is
found for all positive values.

that σM(k) > 0 then this perturbation grows in time and the steady flow is linearly
unstable. Example plots of σM(k) are shown in figures 9 and 10 for both the new
viscous equations and the inviscid equivalent (ν = 0). This inviscid case corresponds
to a one-dimensional version of Woodhouse et al.’s (2012) model, although they used
the original exponential form of the basal friction law (Pouliquen 1999a) as opposed
to (3.7). In the viscous regime, the coefficient ν is set to be 0.001 m3/2 s−1 for all
stability results shown on figures 9 and 10, but qualitatively similar behaviour is found
for different values of ν > 0.
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FIGURE 10. Plots of the growth rates σM(k) at the critical Froude number F = Fc. The
inviscid growth rates grow unboundedly σM ∝ k1/2 as k −→∞ according to the scaling
(5.31). The viscous values are also unstable for all wavenumbers but σM remains bounded
and decays to zero like 1/k4 as k −→ ∞ (5.35), giving an internal maximum σMax =
max (σM) at k= kM . The parameters used are ν = 0.001 m3/2 s−1 and φ̄0 = 0.8, giving a
critical Froude number Fc = 1.94 at flow thickness h0 = 2.47 mm.

All of the cases considered in figures 9 and 10 show regions of positive growth rate
for small k, meaning these base states are unstable to small wavenumber perturbations.
However, there are major differences at larger values of k, depending on the Froude
number and whether the viscous or inviscid equations are being considered. In
the inviscid regime, the growth rates remain positive for all wavenumbers and are
increasing functions of k, whereas the viscous growth rates take their maximum
at a finite value of k and, in some cases, have a cutoff wavenumber above which
perturbations are stable (figure 9b).

An important result in Woodhouse et al. (2012) was the discovery of unbounded
growth rates, σM −→∞ as k−→∞ (figure 10), at a critical Froude number, meaning
the inviscid system of equations was ill posed at this specific point in parameter
space (Joseph & Saut 1990). Although the model was well posed almost everywhere,
numerical simulations of the fingering instability showed that the width of the fingers
was grid dependent. This was because the computations always encompassed a line of
points where the depth-averaged concentration was equal to the critical concentration
for ill posedness, and refining the computational domain introduced increasingly
unstable small wavelength perturbations in these regions. The critical regime can be
related to the characteristics of the inviscid equations, which are given in (x, t) space
by the lines

dx
dt
= λ, (5.24)

where λ is the characteristic wavespeed. For the non-dimensional mass and momentum
balance equations (5.2), (5.3) there are two wavespeeds given by

λ(1) = ū+ 1
F

√
h, λ(2) = ū− 1

F

√
h, (5.25a,b)
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(see, for example, Courant & Hilbert 1962) whereas for the large particle transport
equation (5.4) the wavespeed is

λ(3) = ū(1−G′(φ̄)). (5.26)

Note that it is only possible to separate the two sets of characteristics in this
way because the segregation-mobility coupling arises through the source terms of
the momentum equation, which do not contribute to the characteristic structure.
Evaluating at the steady state (h, ū, φ̄)= (1, 1, φ̄0), and noting that G′0 < 1, it can be
seen that λ(1) > 0 and λ(3) > 0. The other wavespeed λ(2) is positive for F > 1 and
negative for F< 1. Most importantly, at the critical Froude number

F= Fc ≡ 1
|G′0|

, (5.27)

the large particle transport equation’s characteristic wavespeed (5.26) coincides with
one of those from the shallow water equations (5.25), depending on the sign of G′0,
and the system loses strict hyperbolicity. This is the point at which unbounded growth
rates are found in the linear stability analysis for the inviscid model. It is therefore
vital to check that the growth rate for this new viscous model remains bounded for all
wavenumbers by conducting an asymptotic analysis of the characteristic polynomial
(5.22) for k � 1. The reader is referred to appendix A for the full details, but a
summary of the key results is given in the following sections.

5.3. Inviscid high wavenumber asymptotics
For completeness, we begin by considering the inviscid case, ν = 0. The real part of
the three roots is found to behave like

σ
(1)
R ∼

(FG′0 − 1)(Fµh −µū)+ FG0(1− F)µφ̄
2F2(FG′0 − 1)

, (5.28)

σ
(2)
R ∼

−(FG′0 + 1)(Fµh +µū)+ FG0(1+ F)µφ̄
2F2(FG′0 + 1)

, (5.29)

σ
(3)
R ∼

G0(1−G′0)µφ̄
F2(G′0)2 − 1

, (5.30)

in the high wavenumber limit (see § A.1), meaning that the growth rate σM tends to
a constant value as k −→ ∞. From the definition (5.17) and the assumption (3.5)
that large particles experience greater frictional forces, it follows that µφ̄ < 0. Using
this, and the fact that G′0 < 1 by (5.14), it can be seen that that σ (3)R > 0 for F < Fc,
where the critical Froude number is defined by (5.27). The growth rate σM is therefore
always positive for F< Fc, meaning perturbations grow in time and the base state is
unstable as k −→∞ (figure 9a). For F > Fc the third root σ (3)R is now stable in the
asymptotic limit and one must investigate the sign of the other roots σ (1)R and σ

(2)
R .

For the parameters given in table 1 at least one of (5.28) or (5.29) is positive for all
regions of (h0, φ̄0) space, meaning that σM > 0 and the base state is again unstable
(figure 9b).

At the critical Froude number F = Fc the third root σ (3)R and either σ (1)R or σ (2)R
become infinite, depending on the sign of G′0. In these singular cases, the leading-order
growth rate is instead given by the distinguished limit

σ
(±)
R ∼± 1

2 |G0G′0(1−G′0)µφ̄|1/2k1/2, (5.31)
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for large k. The positive root in (5.31) will give unbounded growth rates proportional
to k1/2 (figure 10), which is the same as the one-dimensional result found in
Woodhouse et al. (2012) and means that the inviscid model is ill posed in the
sense of Joseph & Saut (1990).

5.4. Viscous high wavenumber asymptotics
Returning to the viscous equations (finite R> 0), the leading-order behaviour of the
three roots are

σ
(1)
R ∼−

1
R

k2, (5.32)

σ
(2)
R ∼−

R
F2
, (5.33)

σ
(3)
R ∼

R2G0(1−G′0)(F
2(G′0)

2 − 1)µφ̄
F4(G′0)2

1
k2
, (5.34)

for k� 1 (see § A.2). In this high wavenumber limit, the first two of these are stable
for all Froude numbers, whereas the third root is stable for F > Fc and unstable for
F<Fc. To see this, note that G′0 < 1, µφ̄ < 0, and F2(G′0)

2 may be written as (F/Fc)
2.

Whilst the sign is consistent with the inviscid case (5.30), the third root (5.34) does
not tend to a constant value as k −→ ∞, and instead decays to zero like 1/k2

(figure 9a). This is significant because it means that the growth rate σM(k) will take
its maximum value σMax = max (σM) at a finite wavenumber k = kM, corresponding
to the most unstable mode. Furthermore, for finite values of R > 0 the base state
is always stable in the high wavenumber limit when F > Fc. This leads to a cutoff
wavenumber k= kc, and all perturbations with k> kc are stable (figures 9b and 11b).
Neither of these features are present in the inviscid regime, where the maximum
growth rates are given by the asymptotic limits (5.28), (5.29) or (5.30). It is possible
to derive analytical expressions for the cutoff wavenumber kc, details of which are
given in § A.3.

At the critical Froude number the expression (5.34) reduces to zero (since F2(G′0)
2=

1) and a new asymptotic analysis leads to

σ
(3)
R ∼ 2R3G2

0(G
′
0)

2(1−G′0)
2µ2

φ̄

1
k4
, (5.35)

in the high wavenumber limit. The expression (5.35) is strictly positive, meaning the
root is unstable for k� 1. Intuitively, this result agrees with the inviscid analysis for
the critical regime, since these are in some sense the most unstable cases. However,
the growth rate crucially remains bounded for all values of k when viscous terms
are included, and in fact decays like 1/k4 as k−→∞ (figure 10). This ensures that
the model is well-posed, even in the previously problematic critical regime. These
important results are highlighted in figure 11(a), which shows the maximum growth
rates σMax as a function of steady uniform Froude number F. For the inviscid equations
σMax −→∞ as F −→ Fc, whereas the viscous curves remain bounded for all Froude
numbers.

As already noted, the linear stability calculations shown on figures 9 and 10 are
computed using a fixed coefficient in the effective viscosity ν = 0.001 m3/2 s−1, and
qualitatively similar behaviour is found for all positive choices of ν. The specific value
does not affect whether the equations are well posed, but it does have an influence
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FIGURE 11. (a) Plots of the maximum growth rate σMax against steady-state Froude
number F. The inviscid values are infinite at F=Fc, whereas σMax remains bounded for all
Froude numbers when viscosity is included. (b) The cutoff wavenumber kc as a function
of F, which only exists for the viscous regime, providing that F>Fc. Larger values of the
coefficient ν lead to smaller σMax and kc. In both plots the depth-averaged concentration
is fixed at φ̄0 = 0.8 and F is varied by changing the steady-state thickness h0.

on the stability of steady uniform flows. Increasing ν, and consequently reducing the
Reynolds number R, leads to lower maximum growth rates σMax (figure 11a) and
therefore has a stabilising effect on the base state. The most unstable mode kM and
cutoff wavenumber kc (when it exists) decrease with increasing ν (figure 11b).

6. Two-dimensional numerical simulations for a propagating front
Having eliminated the possibility of unbounded growth rates as a source of ill

posedness, the capability of the new governing equations to model physical systems
may be tested. One such system is segregation-induced fingering instabilities that
develop as a front of bidisperse material propagates down an inclined plane (see
figures 2, 3, movie 1 and Pouliquen et al. 1997; Pouliquen & Vallance 1999;
Woodhouse et al. 2012, for example). In an initially homogeneous mixture large
particles are rapidly segregated to the surface, where the higher velocity shears them
to the front. Here they are overrun, resegregated upwards and recirculated by the
bulk to form a coarse-rich flow head. This head experiences enhanced frictional
forces and may break down into a series of ‘finger-like’ structures. Each finger is
bounded by static or slowly moving levees of coarse material that channelise the
finer, more mobile interior. This phenomenon is important because it is an example
of a segregation-mobility feedback effect, with the instability being suppressed in
experiments using monodisperse material (see figure 5). Woodhouse et al. (2012) were
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able to produce numerical simulations showing spontaneous leveed finger formation
and elongation, but their results were grid dependent due to the ill posedness discussed
in the previous sections.

6.1. Generalised equations
Many granular flow configurations have little variation in the lateral direction,
allowing them to be modelled by one-dimensional (depth-averaged) equations
governing the evolution in time and downslope direction (e.g. Gray & Edwards
2014; Edwards & Gray 2015). However, the instability that occurs as a bidisperse
mixture propagates down a plane is predominantly in the transverse direction, meaning
that the lateral dependence needs to be explicitly accounted for in the model. The
governing equations must therefore be extended to two spatial dimensions. Baker
et al. (2016) examined a similar problem for monodisperse material and generalised
the one-dimensional depth-averaged µ(I)-rheology of Gray & Edwards (2014) to two
dimensions. Using their work as a base and introducing a cross-slope coordinate y
and depth-averaged velocity v̄, the two-dimensional segregation-mobility feedback
equations (reverting to dimensional variables) are

∂h
∂t
+∇ · (hū)= 0, (6.1)

∂

∂t
(hū)+∇ · (hū⊗ ū)+∇

(
1
2

gh2 cos ζ
)
= ghS+∇ · (νh3/2D̄), (6.2)

∂

∂t
(hφ̄)+∇ · (hūφ̄)−∇ · (hūG(φ̄))= 0, (6.3)

where ū= (ū, v̄) is the depth-averaged velocity vector, ∇ = (∂/∂x, ∂/∂y) denotes the
gradient operator in (x, y) space, ‘·’ is the dot product and ⊗ the dyadic product.
Assuming no basal topography, the source terms S= (Sx, Sy) are given by

Sx = cos ζ
(

tan ζ −µb
ū
|ū|
)
, Sy =− cos ζ

(
µb

v̄

|ū|
)
, (6.4a,b)

where |ū| = (ū2 + v̄2)1/2 is the magnitude of the velocity. The basal friction law
µb(h, Fr, φ̄) is defined by (3.4) and (3.7) using the more general Froude number
definition

Fr= |ū|√
gh cos ζ

. (6.5)

The coefficient ν > 0 remains a free parameter for slope angles in the range (3.10),
and the depth-integrated strain-rate tensor is

D̄ = 1
2(∇ū+ (∇ū)T). (6.6)

The generalised large particle transport equation (6.3) can be derived in a similar
manner to the one-dimensional case (2.15), providing assumptions are made about the
vertical variation of the transverse velocity. Whilst the downslope velocity magnitudes
are typically much larger than their lateral counterparts, the thinness of the flow means
that material responds to shear comparably in both directions, and thus the shear
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profile is taken to be the same (see Woodhouse et al. 2012). The transport function
G then remains unchanged and is given by (2.17) with α = 1/7.

Note that, for simplicity, the linear stability analysis conducted in § 5 is for the
one-dimensional equations and does not strictly apply to their generalised form
(6.1)–(6.3). One cannot guarantee that these will also be well posed without further
calculations. Woodhouse et al. (2012) carried out a full two-dimensional stability
analysis for their inviscid equations and found that the most unstable mode was
usually in the downslope direction. In particular, the unbounded growth rates were
only apparent in the large kx (downslope wavenumber) limit. The equivalent analysis
has been carried out for the viscous equations (see appendix B), and unstable modes
are only found for non-zero downslope perturbations. In all cases, the growth rates
remain bounded for all wavenumbers, meaning the generalised equations are well
posed.

6.2. Numerical solutions
The system of coupled partial differential equations (PDEs) (6.1)–(6.3) is now solved
numerically using the shock-capturing central scheme of Kurganov & Tadmor (2000).
This is second order in space and has a semi-discrete formulation, allowing it to
be combined with a time stepper of choice. In this case a Runge–Kutta–Chebyshev
adaptive step method (Medovikov 1998) is employed. The scheme is well suited to
this particular problem because it is easily generalised to multiple spatial dimensions
and is capable of handling convection–diffusion equations. It has previously been used
to solve similar systems governing granular flows, for example a two-dimensional
breaking size-segregation wave (Johnson et al. 2012), granular roll waves (Gray &
Edwards 2014; Razis et al. 2014) and erosion–deposition waves (Edwards & Gray
2015). To calculate the numerical fluxes, the scheme requires the specification of a
flux limiter. Here, the weighted essentially non-oscillatory (WENO) limiter detailed
in Noelle (2000) is chosen. In order to utilise the numerical method of Kurganov &
Tadmor (2000), the governing equations must be written in conservative form. This
introduces numerical singularities in both the convective and diffusive fluxes as h−→
0. To get around this potential problem a minimum flow thickness smaller than one
particle diameter, hmin= 10−4 m, is introduced and the fluxes are set to zero whenever
h< hmin.

For numerical simulations of a front of granular material advancing down an
inclined plane, initial conditions of an empty slope

h(x, y, 0)= 0, ū(x, y, 0)= 0, v̄(x, y, 0)= 0, φ̄(x, y, 0)= 0, (6.7a−d)

are prescribed. Simulations are carried out on a computational domain Lx × Ly

discretized over Nx ×Ny grid cells, giving a spatial resolution of Nx/Lx × Ny/Ly

points per metre. Periodic boundary conditions are specified in the y direction, and
at the upstream boundary (x= 0) the inflow conditions

h(0, y, t)= (1− e−10t)h0, ū(0, y, t)= ū0, v̄(0, y, t)= 0, φ̄(0, y, t)= φ̄0 + δφ̄p(y),
(6.8a−d)

are enforced. These correspond to the steady uniform flow of § 4, with the thickness
prefactor (1 − e−10t) used to ensure a smooth transition from an empty slope. Note
that the simulations represent a continuous inflow (akin to figures 3a, 4a) as opposed
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to a finite release of material (figures 3b, 4b). To introduce transverse variation into
the system the inflow concentration is perturbed with a periodic function

φ̄p(y)= sin (2πy/Ly), (6.9)

of magnitude δ = 8 × 10−5. Simulations are halted before material reaches the
downstream boundary and so, since the equations degenerate when h= 0, no boundary
conditions are required at this end of the domain.

Figures 12–14 and supplementary movie 3 show the resulting contours of the
flow height h, depth-averaged concentration φ̄ and speed |ū|. It can be seen that the
governing equations are able to qualitatively reproduce many of the key phenomena
present in the experimental set-up. The concentration plots (figure 12) show that a
large-particle-rich front quickly develops and subsequently breaks up into a series
of fingers. These are bounded by coarse-grained lateral levees, and elongate as
time progresses. As the fingers emerge from the uniform front the large particles
are shouldered aside into slow moving coarse-particle-rich levees, and the large
particle regions at the finger tips are dramatically reduced in size. In practice a
breaking size-segregation wave will form just behind the front (Thornton & Gray
2008; Gray & Ancey 2009; Johnson et al. 2012; Gajjar et al. 2016) which in the
depth-averaged segregation theory (Gray & Kokelaar 2010a,b) is replaced by a
depth-averaged concentration shock. The existence of a breaking size-segregation
wave in the physical experiments, as well as diffusion, makes the transition at the
large-rich front much more diffuse than predicted in the simulations.

Note that the coarse-rich front that forms before the onset of finger formation is not
a steady travelling wave solution to the system of equations, because large particles
continue to accrue at the flow front (Gray & Kokelaar 2010a). A steadily travelling
base state must include a mechanism to counteract this accumulation, which Gray &
Ancey (2009) achieved by depositing the coarser grains arriving at the front onto the
underlying substrate. In the absence of basal deposition the large particles may be
removed from the frontal region through lateral advection towards the levees, and
Johnson et al. (2012) showed that this gave rise to a steady travelling segregation
profile on the flow centreline, for a specified flow thickness and velocity field. We now
believe that a single leveed finger can propagate steadily downslope, and anticipate
that such a travelling wave solution to equations (6.1)–(6.3) would be an appropriate
base state, although this has not been confirmed. This behaviour is in direct contrast
to the pure small limit (φ̄ = 1). Assuming no transverse variation, the monodisperse
equations admit a steady travelling front solution (Gray & Edwards 2014), which can
be found analytically (Gray & Ancey 2009) or numerically (Pouliquen 1999b) and is
unaffected by the new viscous terms. Two-dimensional computations suggest that this
base state does not break down into fingers, which is consistent with the monodisperse
experiments (figure 5), although roll waves may form and travel to the flow front.

From figure 13 it can be seen that once the fingers form the material travelling
down the centre of the channels is moving approximately twice as fast as the steady
uniform flow behind. This can be explained by examining the coarse-rich lateral
levees, where the flow approaches zero velocity at the margins between adjacent
fingers. To account for these reduced flux sections, the central regions must increase
their flux, through a combination of flow thickening and increased speed, in order
to conserve material from the constant inflow. There is an important discrepancy in
the slow moving zones between experiments and numerics. In the laboratory, some
of the material in the levees is completely stationary, but this is not achieved at any

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.673
Downloaded from http:/www.cambridge.org/core. IP address: 109.159.110.65, on 12 Nov 2016 at 14:52:45, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.673
http:/www.cambridge.org/core


194 J. L. Baker, C. G. Johnson and J. M. N. T. Gray

0.5

x (m)

y 
(m

)
y 

(m
)

y 
(m

)
y 

(m
)

y 
(m

)

1.0 1.50

0.25

0.50

0

0.25

0.50

0

0.25

0.50

0

0.25

0.50

0

0 0.5 1.0

0.25

0.50

FIGURE 12. Numerical solutions of the system of PDEs (6.1)–(6.3) showing the depth
averaged concentration φ̄ at times t = 1.9 s (non-dimensional t̂ = 198), t = 3.3 s (t̂ =
343), t = 5.1 s (t̂ = 530), t = 6.2 s (t̂ = 645) and t = 7.5 s (t̂ = 780). A large-rich region
quickly develops at the flow front (t = 1.9 s), starts to become unstable (t = 5.1 s) and
develops into fingers (t = 6.2 s) which elongate and coarsen over time. It is clear that
lateral levees bounding the fingers consist predominantly of large particles. The colour
scheme has been chosen to mimic experiments, with turquoise representing the region
where the chute is empty, h< hmin. Parameters are h0= 2 mm, φ̄0= 0.8, ū0= 0.208 ms−1,
F = 1.57, ν = 0.01 m3/2 s−1, Nx/Lx = Ny/Ly = 750 m−1. Note that the axes limits Lx =
1.5 m, Ly = 0.5 m correspond to non-dimensional values of L̂x = 750 and L̂y = 250
respectively. Supplementary movie 3 available online.

point in the simulations. Whilst this is not a major problem for the fingers that form
from a continuous source (figures 3a, 4a), as the inflow is cutoff and the flow wanes
the static regions become more significant and lead to distinct fingers separated by
grain-free regions (figures 3b, 4b). In order to bring material to rest and prevent
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FIGURE 13. Numerical solutions of the system of PDEs (6.1)–(6.3) showing the speed
|ū| = (ū2 + v̄2)1/2 at times t = 1.9 s, t = 3.3 s, t = 5.1 s, t = 6.2 s and t = 7.5 s. Once
the flow breaks up into fingers the lateral levees are close to stationary, with areas of
much faster flow down the central, channelised regions representing the more mobile
interior. Parameters are the same as in figure 12, meaning that a dimensional velocity of
|ū|= 0.208 m s−1 would correspond to a non-dimensional value of | ˆ̄u|= 1. Supplementary
movie 3 available online.

merging and coarsening of fingers in the final stages of flow, the extended friction
law of Pouliquen & Forterre (2002) needs to be generalised to bidisperse material
and implemented.

The flow thickness plots (figure 14) show that the region immediately behind
the flow front is elevated above the steady uniform inflow depth. This is consistent
with observations of bulbous flow fronts in both experiments and geophysical events
(Johnson et al. 2012; Kokelaar et al. 2014). There are also regions at the rear of
the fingers that are significantly higher than the rest of the material. Comparing with
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FIGURE 14. Numerical solutions of the system of PDEs (6.1)–(6.3) showing the flow
thickness h. Simulations are shown at times t= 1.9 s, t= 3.3 s, t= 5.1 s, t= 6.2 s and
t= 7.5 s. The propagating front breaks up into a series of fingers going to zero thickness
at the boundaries. A region of thicker flow follows behind the main front. Parameters
used are the same as figures 12 and 13, meaning a dimensional thickness of h= 2 mm
represents ĥ= 1 in non-dimensional terms. Supplementary movie 3 available online.

figures 12 and 13, these correspond to the large particle islands that are also seen in
small-scale experiments. For the continuous inflow regime simulated here, they move
slowly downstream, which matches the experimental erosion processes (figure 3a).
Whilst there are no quantitative comparisons made at this stage, typical time scales
for the onset of finger formation are roughly consistent. The channel widths do not
correspond to the imposed inflow perturbation, meaning they are set by the system
itself, and are of the correct order of magnitude (around 5 cm for the simulations
shown). Further discussion about the finger characteristics follows in the next section.
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FIGURE 15. Numerical simulations of depth-averaged concentration φ̄ at time t=7.5 s for
different grid resolutions and domain widths Ly. Black dotted lines denote the maximum
and minimum front position, as defined by (6.10) and (6.11) respectively. The final results
are not identical, but the width and downslope extent of the fingers is similar for all runs.
Other parameters used are the same as in figures 12–14.

6.3. Finger characteristics: numerical versus physical viscosity
As well as showing that the new equations remove the possibility of unbounded
growth rates, it also needs to be checked that the resulting simulations are grid
convergent. Both the experiments and the non-linear equations exhibit high sensitivity
to the initial conditions, which is highlighted numerically by the apparent random
nature of the resulting fingers. Even though these arise through the integration
of deterministic PDEs, numerical round-off error, subsequently magnified by the
underlying instability of the equations, is sufficient to break the symmetry of the
inflow (6.8) and (6.9). Changing the grid resolution will change these conditions, and
one can therefore not expect to obtain identical results when running simulations
with different numbers of grid points. Attention is instead given to the wavelength
of fingers (cross-slope distance between two adjacent channels) and their elongation
(downslope distance between front and rear of leveed region). Woodhouse et al.
(2012) showed that, for the inviscid equations, the wavelength got progressively
smaller and the fingers more elongated with decreasing mesh size, suggesting that
numerical viscosity was a controlling factor for channel characteristics.

Computations are carried out for different grid resolutions and domain widths Ly,
and example results are shown on figure 15. The depth-averaged concentration φ̄
is plotted at time t = 7.5 s. As expected, the results are not perfectly identical for
varying numbers of grid points, with the position and shape of the fingers changing
slightly between runs. This is actually a desirable property, since no two experiments
are identical and so it is good that the numerics exhibit a similar degree of sensitivity.
However, like the experiments, the numerical finger width and their elongation stays
approximately the same, which is in direct contrast to Woodhouse et al. (2012). At a
given time it is straightforward to calculate the mean finger wavelength Λ by dividing
the domain width Ly by the number of fingers, and this is shown on figure 16(a) for
the different computations. There is some variation when too few cells are used, but
the wavelength converges at sufficiently high resolutions and is independent of the
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FIGURE 16. The effect of changing the grid resolution on (a) the mean finger wavelength
Λ at time t = 7.5 s and (b) the front elongation xl (given by (6.10)–(6.12)) at times
t= 2.5 s, t= 5.0 s and t= 7.5 s. Both tend to roughly constant values for large enough
numbers of grid points.

domain width. Note that counting the number of fingers from plots such as figure 15
is fairly intuitive since the individual channels are well defined at this time, t= 7.5 s.
However, running the simulations for longer can lead to merging events, making
precise definitions more difficult and meaning that Λ will also evolve over time.

To estimate the elongation of the fingers, a maximum and minimum front position,
x+f and x−f respectively, are defined for each time as

x+f (t)=max {x : h(x, y, t) < hmin}, (6.10)

x−f (t)=min {x : |φ̄(x, y, t)− φ̄0|> φ̄0/2}, (6.11)

where (6.11) is chosen to capture the sharp transition between the mixed inflow and
pure large region at the back of the fingers. The lines where x= x+f (t) and x= x−f (t)
are shown for reference on figure 15. These values can be used to calculate the length,
or elongation, of the fingers as

xl(t)= x+f (t)− x−f (t). (6.12)

Figure 16(b) shows the variation of xl with changing numbers of grid points at
different times t. Again, there is slight variation at low resolutions but it eventually
converges to roughly the same value at all times. This confirms that the numerical
viscosity is no longer controlling the finger properties, which is major progress in
modelling spontaneous finger formation.

The wavelength and downslope extent of the fingers is now being set by the
equations themselves, in particular the newly introduced physical viscosity. All the
computations thus far were carried out with a coefficient in the effective viscosity
ν = 0.01 m3/2 s−1. This may be unphysically high, but was chosen to ensure that it
would outweigh any numerical diffusion in checking grid convergence. Since it is
being treated as a free parameter in this paper, simulations were also conducted with
values of ν ranging from 0.005 to 0.05 to investigate what effect this has on the
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FIGURE 17. The effect of changing the viscosity coefficient ν on (a) the mean finger
wavelength Λ at a given time t= 7.5 s and (b) the front elongation xl. The grid resolution
is fixed at Nx/Lx =Ny/Ly = 500 m−1.
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FIGURE 18. Plots of minimum and maximum front position, x−f and x+f , and finger length
xl as functions of time for different values of ν. All travel at approximately constant
velocities until the onset of finger formation, which occurs at earlier times for smaller
viscosities.

physical characteristics of the fingers. The results are shown on figure 17, where it
can be seen that increasing ν typically leads to fewer fingers (larger wavelength) that
are less elongated (smaller xl). One interpretation is that higher material viscosities
suppress finger formation. This is investigated further on figure 18, where the front
positions x−f , x+f and finger lengths xl are plotted as functions of time t for different
viscosities. During the initial uniform propagation, both the minimum and maximum
front positions move at constant velocities, with x+f travelling faster than x−f leading
to a steady growth in xl. At the onset of finger formation, there is an increase
in the speed of x+f as the more mobile interior breaks through the resistive front.
Interestingly, the maximum extent of the flow then travels faster than the prescribed
inflow, which could have important implications from a hazards mitigation perspective.
At the same time there is a corresponding deceleration of x−f as the slow moving large
particle islands form, and combined with the acceleration of the finger tips this leads
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to a sudden increase in the rate of elongation of the frontal region. This transition
point happens at earlier times for lower values of ν, which is consistent with the
linear stability results in § 5 where higher viscosities lead to slower maximum growth
rates. It is also consistent with the idea that the frontal break down is closely tied to
the region of steady uniform flow immediately behind.

7. Conclusions

Polydispersity in granular flows can significantly alter the overall flow characteristics,
with particle size segregation leading to the formation of regions with different sized
grains. If these grains also have different frictional properties this then feeds back
on the bulk flow and can produce rich behaviour that is not seen in monodisperse
flows, such as self-organisation into coarse-grained levees and segregation-induced
fingering instabilities. This paper has presented a fully coupled depth-averaged model
for such segregation-mobility feedback effects. The evolving particle distribution
is governed by a large particle transport equation, which is derived from a full
segregation equation by assuming perfect vertical inverse grading and a shear profile
through the avalanche. It is shown that using a physically motivated Bagnold profile
leads to qualitatively similar transport functions to previous models (Gray & Kokelaar
2010a,b; Woodhouse et al. 2012), providing the correct shear parameter is chosen.
This Bagnold assumption is also consistent with that used by Gray & Edwards
(2014) to incorporate higher-order terms into their depth-averaged µ(I)-rheology for
monodisperse flows. These second-order terms are generalised for the bidisperse
regime considered here, giving a viscous model with coupling achieved via a
concentration-weighted effective basal friction.

Linear stability calculations of the steady uniform base state highlight the
significance of the higher-order terms, which were not present in Woodhouse et al.
(2012). The growth rates now remain bounded everywhere, whereas for the inviscid
equations there is a critical Froude number that gives rise to unbounded growth
rates in the high wavenumber asymptotic limit. This means that the introduction
of viscosity regularises the problem and ensures that the governing equations are
mathematically well posed. Perhaps this is not such a surprising result, but the
advantage of the particular viscosity formulation used in this paper is that the
structure of the higher-order terms is physically motivated, with the parameters
completely determined by the µ(I)-rheology and no additional fitting parameters
required, at least in the monodisperse regime.

The system is then generalised to two spatial dimensions in an analogous way
to Baker et al. (2016) (for monodisperse flows) and numerical simulations of a
propagating flow front are presented. The equations are able to predict the formation
of a coarse-rich flow front that develops instabilities and breaks up into a series of
finger-like structures, elongating over time. The lateral boundaries of these fingers
consist of large particle levees, where material is travelling significantly slower than
the finer-grained interior, which itself moves faster than the steady uniform supply.
There is also a noticeable speed-up at the tip of the flow as the fingers first emerge.
At the rear of the levees are clusters of coarse grains that migrate slowly downslope,
consistent with the erosion processes observed during continuous inflow experiments.
Unlike the physical system, there are no positions in the simulation domain where
the velocities reach precisely zero. This is not problematic for the onset of finger
formation considered in this paper, but is expected to become more significant when
examining the final run-out of flows after the supply of particles has been stopped.
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In this case the static regions are important in preventing lateral levee spreading and
forming grain-free regions between distinct fingers. To bring material to rest and
lock in the structure of the channel walls the extended friction law of Pouliquen &
Forterre (2002) appears to be necessary.

The ill posedness of the inviscid model (Woodhouse et al. 2012) manifested
itself as grid-dependent simulations, with increasing numbers of computational cells
leading to larger numbers of fingers that spread over greater downslope distances.
This suggests that the finger characteristics were being determined by numerical
viscosity. Solutions of the new equations do not suffer from the same problem,
with both the finger wavelength and their elongation converging for sufficiently high
resolutions. The sensitivity of the system means that there is still some variety in
the exact shape and position of the channels, but this is not necessarily undesirable
since the laboratory experiments are also highly sensitive to the initial conditions.
The channels in consecutive experimental runs will always form in slightly different
places, although the characteristic width and time scales will be similar.

This paper is only a preliminary investigation into finger formation, focusing on
establishing the well posedness and grid convergence of the system as opposed to
detailed analysis of finger growth rates and wavelengths. Indeed, such analysis is
complicated by a number of factors, including the sensitivity described above, the
temporal evolution of the base state (which is uniform in y but evolving in x and
t), nonlinear coarsening, and the interactions between instabilities of the front and
instabilities of the steady uniform flow behind. The linear stability analysis of § 5
is presented in one spatial dimension to simplify and aid visualisation, and, whilst
the two-dimensional version (appendix B) of a uniform base state is important for
checking well posedness in the general case, it is difficult to relate this to the
numerical computations of a non-uniform base state.

Despite these difficulties, the qualitative properties of the fingers in the simulations
are now controlled by the physical viscosity via the effective coefficient ν. Increasing
this leads to larger wavelength fingers that do not spread as far in the downslope
direction. Higher viscosity flows also take longer to break down into leveed channels,
which is consistent with linear stability calculations of the steady uniform base state.
The value of ν is currently treated as a free parameter, since fingers only form at slope
angles where the depth-averaged µ(I)-rheology of Gray & Edwards (2014) needs to
be regularised. Choosing ν so that the numerical simulations match experimental data
may provide insight into precisely how to achieve this regularisation. It may also be
possible to calibrate the coefficient of viscosity from other bidisperse experiments, for
example using the cutoff frequency for the roll-wave instability.
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Appendix A. Details of one-dimensional linear stability analysis
This appendix provides derivations of the asymptotic results presented in §§ 5.3

and 5.4, as well as analytical expressions for the cutoff wavenumber for instability
in the viscous regime. Firstly, the characteristic polynomial (5.22) is given again for
completeness,

f (σ )≡ f0 + f1σ + f2σ
2 + σ 3 = 0. (A 1)

It is useful to expand the coefficients in powers of the wavenumber k,

f0 = f0,2k2 + if0,3k3 + f0,4k4, (A 2)
f1 = if1,1k+ f1,2k2 + if1,3k3, (A 3)

f2 = f2,0 + if2,1k+ f2,2k2, (A 4)

where

f0,2 =− 1
F2
(1−G′0)(µū −µh), f0,3 = 1

F2
(1−G′0)(1− F2), f0,4 =− 1

R
(1−G′0),

(A 5a−c)

f1,1 = 1
F2
((2−G′0)µū −µh +G0µφ̄), f1,2 = 1

F2
− 3+ 2G′0, f1,3 = 1

R
(2−G′0),

(A 6a−c)

f2,0 = µū

F2
, f2,1 = 3−G′0, f2,2 = 1

R
. (A 7a−c)

A.1. Inviscid asymptotics
Firstly consider the inviscid case, so that f0,4= f1,3= f2,2= 0. An asymptotic expansion
is sought of the form

σ ∼ σ0kp + σ1kq + σ2kr + σ3ks + · · · (A 8)

for k� 1, where the exponents p > q > r > s · · · are to be determined. The terms
σ0, σ1, σ2, σ3, . . . are all strictly O(1) and are calculated in increasing order until a
non-zero real part is found. This then determines the leading-order growth rate of the
root. Substituting the ansatz (A 8) into the characteristic polynomial (A 1) gives the
dominant balance p= 1 and the leading-order behaviour at O(k3) is

if0,3 + f1,2σ0 + if2,1σ
2
0 + σ 3

0 = 0, (A 9)

with associated solutions

σ
(1)
0 =−i

(
1− 1

F

)
, σ

(2)
0 =−i

(
1+ 1

F

)
, σ

(3)
0 =−i

(
1−G′0

)
. (A 10a−c)

These are all purely imaginary, so the next order in the expansion is considered by
setting q= 0 which gives, at O(k2), the linear equation,

( f0,2 + if1,1σ0 + f2,0σ
2
0 )+ ( f1,2 + 2if2,1σ0 + 3σ 2

0 )σ1 = 0. (A 11)
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Rearranging for σ1 and substituting in the expressions (A 10) gives the real values

σ
(1)
1 =

(FG′0 − 1)(Fµh −µū)+ FG0(1− F)µφ̄
2F2(FG′0 − 1)

, (A 12)

σ
(2)
1 =

−(FG′0 + 1)(Fµh +µū)+ FG0(1+ F)µφ̄
2F2(FG′0 + 1)

, (A 13)

σ
(3)
1 =

G0(1−G′0)µφ̄
F2(G′0)2 − 1

. (A 14)

The growth rate of all three roots therefore tends to a constant as k −→ ∞,
with the value being determined by (A 12)–(A 14). At the critical Froude number
F = Fc = 1/|G′0|, two of the above roots become infinite because the coefficient of
σ1 in (A 11) is zero (meaning the denominator in (A 12)–(A 14) degenerates). In this
case the alternative dominant balance q= 1/2 is chosen, which gives at O(k2),

( f0,2 + if1,1σ0 + f2,0σ
2
0 )+ (2if2,1 + 3σ0)σ

2
1 = 0. (A 15)

Substituting in σ0 =−i(1−G′0), which is the same for both critical roots, gives

σ 2
1 = iG0G′0(1−G′0)µφ̄, (A 16)

and the corresponding real parts

σ
(±)
1R
=± 1

2 |G0G′0(1−G′0)µφ̄|1/2. (A 17)

In this critical regime these two roots scale with k1/2 in the large wavenumber limit,
and the positive choice in (A 17) grows unboundedly. By definition (Joseph & Saut
1990), this means that the inviscid equations are ill posed at the critical Froude
number.

A.2. Viscous asymptotics
Repeating the same process for the viscous equations, two possible dominant balances
are found for the leading-order behaviour. Choosing p= 2 gives, at O(k6),

f2,2σ
2
0 + σ 3

0 = 0, (A 18)

which has non-zero real solution

σ
(1)
0 =−

1
R
. (A 19)

The growth rate of the first root is therefore negative and decays like k2 for large k.
The other roots are found by letting p = 1, giving leading-order behaviour at O(k4)
determined by the quadratic

f0,4 + if1,3σ0 + f2,2σ
2
0 = 0, (A 20)

which has purely imaginary solutions

σ
(2)
0 =−i, σ

(3)
0 =−i(1−G′0). (A 21a,b)
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The next-order dominant balance is achieved by setting q= 0, which gives, at O(k3),
the linear equation

( f0,3 + f1,2σ0 + f2,1σ
2
0 + σ 3

0 )+ ( f1,3 + 2f2,2σ0)σ1 = 0. (A 22)

Substituting in for σ0 = σ (2)0 from (A 21) gives the real solution

σ
(2)
1 =−

R
F2
. (A 23)

Hence, the second root is also stable in the large wavenumber limit, with growth rates
tending to the negative constant (A 23). However, using σ0= σ (3)0 gives σ1= 0. In this
case the alternative scaling q=−1 is chosen and the next-order behaviour is at O(k2)
and given by

( f0,2 + if1,1σ0 + f2,0σ
2
0 )+ (if1,3 + 2f2,2σ0)σ1 = 0, (A 24)

which leads to the imaginary solution

σ
(3)
1 =

iRG0(1−G′0)µφ̄
F2G′0

. (A 25)

The next order is at O(k) and achieved by setting r = −2. This gives the linear
equation

( f1,2 + 2if2,1σ0 + 3σ 2
0 )σ1 + (if1,3 + 2f2,2σ0)σ2 = 0, (A 26)

with real solution

σ
(3)
2 =

R2G0(1−G′0)(F
2(G′0)

2 − 1)µφ̄
F4(G′0)2

. (A 27)

The third growth rate therefore decays to zero like O(k−2) for k � 1. It may be
stable or unstable, depending on the sign of (A 27), but remains bounded for all
wavenumbers. Note that (A 27) degenerates to zero at F = Fc. In this case one must
instead choose r=−3, giving at O(1),

(if1,1 + 2f2,0σ0 + f2,2σ1)σ1 + (if1,3 + 2f2,2σ0)σ2 = 0, (A 28)

with associated imaginary solution

σ
(3)
2 =

iR2G0(1−G′0)(G
′
0µh − (G′0)2µū −G0µφ̄)µφ̄

F4(G′0)3
. (A 29)

The next highest order is achieved by setting s=−4, which gives at O(k−1),

( f1,2σ2 + 2if2,1σ0σ2 + if2,1σ
2
1 + 3σ0σ

2
1 + 3σ 2

0 σ2)+ (if1,3 + 2f2,2σ0)σ3 = 0, (A 30)

with real solution

σ
(3)
3 = 2R3G2

0(G
′
0)

2(1−G′0)
2µ2

φ̄
. (A 31)

This is positive, meaning the third root will be unstable at the critical Froude number
in the large wavenumber limit. However, the choice s=−4 means that it will decay
to zero according to k−4, crucially remaining bounded for all values of k. The viscous
equations therefore remain well posed.
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A.3. Viscous cutoff wavenumber
The cutoff wavenumber for instability, k= kc, occurs when the growth rate is purely
imaginary, say σ = iσc. Substituting into the characteristic polynomial (A 1) and
equating real and imaginary parts gives

( f2,0 + f2,2k2
c)σ

2
c + ( f1,1kc + f1,3k3

c)σc − ( f0,2k2
c + f0,4k4

c)= 0, (A 32)
σ 3

c + f2,1kcσc − f1,2k2
cσc − f0,3k3

c = 0. (A 33)

Equation (A 32) is a quadratic in σc which can be solved to give the relation

σ±c (kc)=C±(kc)kc, (A 34)

where the functions C±(kc) are defined as

C±(kc)= −( f1,1 + f1,3k2
c)±

√
( f1,1 + f1,3k2

c)
2 + 4( f0,2 + f0,4k2

c)( f2,0 + f2,2k2
c)

2( f2,0 + f2,2k2
c)

. (A 35)

Substituting (A 34) into the imaginary parts equation (A 33) and neglecting the trivial
root kc = 0 gives the cubic equation

C3 + f2,1C2 − f1,2C− f0,3 = 0, (A 36)

with associated real solutions

C1 = 1
F
− 1, C2 =− 1

F
− 1, C3 =G′0 − 1. (A 37a−c)

Now, equation (A 35) can be rearranged, squared and factorised to give(
k2

c +
f2,0

f2,2

)
((C2f2,2 +Cf1,3 − f0,4)k2

c + (C2f2,0 +Cf2,1 − f0,2))= 0. (A 38)

Two solutions of (A 38) for kc are given by

kc1± =±
√
− f2,0

f2,2
=± 1

F

√−µūR, (A 39)

which are independent of the value of C. However, since µū > 0 and the cutoff
wavenumber must be real these can immediately be discarded. The other roots are
given by

kc =±
√
−(C2f2,0 +Cf1,1 − f0,2)

C2f2,2 +Cf1,3 − f0,2
. (A 40)

When C = C3 the denominator in (A 40) is zero, meaning there are no additional
roots in this case. Substituting in the other values of C given by (A 37) leads to the
solutions

kc2± =±
1
F

√
R((FG′0 − 1)(Fµh −µū)+ FG0(1− F)µφ̄)

FG′0 − 1
, (A 41)
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kc3± =±
1
F

√
R(−(FG′0 + 1)(Fµh +µū)+ FG0(1+ F)µφ̄)

FG′0 + 1
. (A 42)

The roots kc2− and kc3− are not permitted since they are negative whenever they are
real. This leaves two possibilities for the cutoff wavenumber, kc2+ and kc3+ . For the
parameters used in this paper they are both imaginary when F < Fc, but at least
one of them is real for F > Fc, meaning a cutoff of the growth rates. Note the
similar structure between (A 40), (A 41) and the asymptotic behaviour of the inviscid
equations, (A 12), (A 13), highlighting the link between both models.

Appendix B. Details of two-dimensional linear stability analysis
This appendix provides details of the linear stability analysis of the two-dimensional

viscous equations used in § 6 in order to check the well posedness of the full system.
The methodology is similar to that of appendix A, and so only the key results are
presented.

Firstly, the two-dimensional governing equations admit (dimensionless) steady-state
solutions (h, ū, v̄, φ̄) = (1, 1, 0, φ̄0). Perturbing about this base state, linearising and
seeking normal modes of the form

(h1, ū1, v̄1, φ̄1)= (H,U, V, Φ)eσ tei(kxx+kyy), (B 1)

for real kx, ky and complex σ(kx, ky) now leads to the quartic characteristic polynomial

f (σ )≡ f0 + f1σ + f2σ
2 + f3σ

3 + σ 4 = 0, (B 2)

which admits solutions σ (1), σ (2), σ (3), σ (4) with corresponding real parts σ (1)R , σ
(2)
R , σ

(3)
R ,

σ
(4)
R . The growth rate σM is then found by taking the maximum of these four values as

in the one-dimensional case. To establish well posedness this must remain bounded in
the asymptotic limit |k|= (k2

x + k2
y)

1/2�1, and so it is useful to expand the coefficients
of (B 2) in terms of the downslope wavenumber kx,

f0 = if0,1kx + f0,2k2
x + if0,3k3

x + f0,4k4
x + if0,5k5

x + f0,6k6
x ,

f1 = f1,0 + if1,1kx + f1,2k2
x + if1,3k3

x + f1,4k4
x + if1,5k5

x ,

f2 = f2,0 + if2,1kx + f2,2k2
x + if2,3k3

x + f2,4k4
x ,

f3 = f3,0 + if3,1kx + f3,2k2
x ,

 (B 3)

and then also in terms of the transverse wavenumber ky,

f0,1 = f0,1,2k2
y + f0,1,4k4

y , f0,2 = f0,2,0 + f0,2,2k2
y + f0,2,4k4

y ,

f0,3 = f0,3,0 + f0,3,2k2
y , f0,4 = f0,4,0 + f0,4,2k2

y , f0,5 = f0,5,0, f0,6 = f0,6,0,

}
(B 4a)

f1,0 = f1,0,2k2
y + f1,0,4k4

y , f1,1 = f1,1,0 + f1,1,2k2
y + f1,1,4k4

y ,

f1,2 = f1,2,0 + f1,2,2k2
y , f1,3 = f1,3,0 + f1,3,2k2

y , f1,4 = f1,4,0, f1,5 = f1,5,0,

}
(B 4b)

f2,0 = f2,0,0 + f2,0,2k2
y + f2,0,4k4

y , f2,1 = f2,1,0 + f2,1,2k2
y ,

f2,2 = f2,2,0 + f2,2,2k2
y , f2,3 = f2,3,0, f2,4 = f2,4,0,

}
(B 4c)

f3,0 = f3,0,0 + f3,0,2k2
y , f3,1 = f3,1,0, f3,2 = f3,2,0. (B 4d−f )
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Written out explicitly for reference, these coefficients are

f0,1,2 = µū

F4
(1−G′0), f0,1,4 = (1−G′0)

2F2R
, f0,2,0 = tan ζ

F4
(1−G′0)(µh −µū),

f0,2,2 = (1−G′0)
2F2R

(µh − 2µū − 2R− tan ζ ), f0,2,4 =− (1−G′0)
2R2

,

f0,3,0 = (1−G′0)
F4

((µh −µū)F2 + (1− F2) tan ζ ), f0,3,2 = (1−G′0)
2F2R

(2− 3F2),

f0,4,0 = (1−G′0)
2F2R

(2R(F2 − 1)− 2 tan ζ +µh −µū), f0,4,2 =− (1−G′0)
R2

,

f0,5,0 = (1−G′0)
2F2R

(1− 3F2), f0,6,0 =− (1−G′0)
2R2

,


(B 5a)

f1,0,2 = µū

F4
, f1,0,4 = 1

2F2R
, f1,1,0 = tan ζ

F4
(−µh + (2−G′0)µū +G0µφ̄),

f1,1,2 = 1
2F2R

((2−G′0)(tan ζ + 2R− 2µū)−µh +G0µφ̄), f1,1,4 = (2−G′0)
2R2

,

f1,2,0 = 1
F4
((2−G′0)F

2µh + (2G′0 − 3)F2µū −GF2µφ̄ + tan ζ (1+ (2G′0 − 3)F2)),

f1,2,2 = 1
2F2R

(2− 3(3−G′0)F
2), f1,3,2 = (2−G′0)

R2
,

f1,3,0 = 1
2F2R

((2−G′0)(2R+ 2 tan ζ +µū)−µh +G0µφ̄ + 2F2R(3G′0 − 2)),

f1,4,0 = 1
2F2R

(1+ 3F2(2G′0 − 3)), f1,5,0 = (2−G′0)
2R2

,


(B 5b)

f2,0,0 = tan ζ
F4

µū, f2,0,2 = 1
2F2R

(tan ζ + 2(R+µū)), f2,0,4 = 1
2R2

,

f2,1,0 = 1
F2
((3−G′0)(µū + tan ζ )−µh +G0µφ̄), f2,1,2 = 3(3−G′0)

2R
,

f2,2,0 = 1
2F2R

(µū + 2 tan ζ + 2R(1+ 3F2(G′0 − 2))), f2,2,2 = 1
R2
,

f2,3,0 = 3(3−G′0)
2R

, f2,4,0 = 1
2R2

,


(B 5c)

f3,0,0 = 1
F2
(tan ζ +µū), f3,0,2 = 3

2R
, f3,1,0 = 4−G′0, f3,2,0 = 3

2R
.

}
(B 5d)

B.1. High downslope wavenumber asymptotics
First consider the high downslope wavenumber limit, kx� 1, for a fixed cross-slope
wavenumber ky > 0. This closely resembles the one-dimensional analysis conducted in
§ A.2, and is a viscous analogue of the results presented in Woodhouse et al. (2012).
An asymptotic expansion is sought of the form

σ ∼ σ0kp
x + σ1kq

x + σ2kr
x + σ3ks

x + · · · (B 6)

for kx� 1 and exponents p> q> r> s> · · · to be determined, alongside the strictly
O(1) values σ0, σ1, σ2, σ3, . . . Omitting the details for simplicity, the leading-order
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growth rates of the four roots are found to be

σ
(1)
R ∼−

1
R

k2
x , σ

(2)
R ∼−

1
2R

k2
x ,

σ
(3)
R ∼−

R
F2
, σ

(4)
R ∼

R2G0(1−G′0)(F
2(G′0)

2 − 1)µφ̄
F4(G′0)2

1
k2

x

,

 (B 7)

for kx � 1. Note the similarities to the one-dimensional case, with the asymptotic
behaviour being independent of the transverse wavenumber ky and remaining bounded
for all kx. The extra spatial dimension simply introduces an extra root, here referred
to as σ (2)R , which is stable in the asymptotic limit. At the critical Froude number σ (2)R
in (B 7) degenerates to zero, and the leading-order growth rate in this case is instead
given by

σ
(c)
R ∼

(
2R3G2

0(G
′
0)

2(1−G′0)
2µ2

φ̄
− R2G0(G′0)

2(1−G′0)µφ̄k2
y

) 1
k4

x

, (B 8)

for kx � 1. This is always positive, meaning that the root is unstable, but remains
bounded even in this critical regime, decaying like 1/k4

x as kx −→∞. Consequently,
when considering the asymptotic behaviour (B 7), (B 8) of all of the roots, it can be
seen that the maximum growth rate σ is bounded above for all parameter values.

B.2. High cross-slope wavenumber asymptotics
Now consider the alternative asymptotic behaviour of high cross-slope wavenumbers
ky� 1, for a fixed downslope perturbation kx > 0. It is interesting to begin with the
special case of purely cross-slope disturbances, kx= 0. In this regime the characteristic
polynomial (B 2) can be solved explicitly to give the four roots

σ (0) = 0, σ (1) =−
(
µū

F2
+ k2

y

2R

)
,

σ (±) =
−(F2k2

y + R tan ζ )±
√
(F2k2

y + R tan ζ )2 − 4F2R2k2
y

2F2R
.

 (B 9)

The real part of σ (1) and σ (±) is negative for all values of ky, meaning these roots are
stable. Consequently, for kx = 0, the maximum growth rate is given by σM ≡ 0 and
hence the base state is neutrally stable. One requires non-zero downslope perturbations
for disturbances to grow in time, so the subsequent calculations assume kx > 0 and
seek an asymptotic expansion of the form

σ ∼ σ0kp
y + σ1kq

y + · · · . (B 10)

Following the same procedure as in appendix A, the leading-order growth rates of the
four roots is given by

σ
(1)
R ∼−

1
R

k2
y , σ

(2)
R ∼−

1
2R

k2
y ,

σ
(3)
R ∼−

R
F2
, σ

(4)
R ∼−

R2G0(1−G′0)µφ̄k2
x

R2 + F4(G′0)2k2
x

1
k2

y

,

 (B 11)

for ky� 1. The first three of these are stable and analogous to the downslope results
(B 7), whereas the fourth root is unstable for non-zero kx in this asymptotic limit. For a
fixed downslope wavenumber, the growth rate remains bounded as ky−→∞ (decaying
to zero) and hence so too does the maximum growth rate σM.
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B.3. High wavenumber asymptotics
In order to completely establish the well posedness of the system, it also needs to be
checked that the growth rates remain bounded when both the downslope and cross-
slope wavenumbers tend to infinity, i.e. kx� 1 and ky� 1. The analysis conducted in
§§ B.1 and B.2 ensures it is sufficient to consider the curves

kx = k, ky =mka, (B 12a,b)

for k� 1, where the constant m> 0 and exponent a> 0. In this case an asymptotic
expansion is sought of the form

σ ∼ σ0kp + σ1kq + σ2kr + · · · , (B 13)

where σ0, σ1, σ2, . . . and the parameters p> q> r> · · · may now depend on a. For
0< a< 1 the leading-order growth rates of the first three roots is given by

σ
(1)
R ∼−

1
R

k2, σ
(2)
R ∼−

1
2R

k2, σ
(3)
R ∼−

R
F2
, (B 14a−c)

for k� 1, which are all stable. The growth rate of the final root is more complicated
to calculate, but note that the first two terms in the asymptotic expansion (B 13) are
given by the imaginary expressions

σ (4) ∼−i(1−G′0)k+
iRG0(1−G′0)µφ̄

F2G′0

1
k
+ · · · (B 15)

for k� 1, and hence the exponent of k in the leading-order real growth rate must
therefore be less than −1. This growth rate will therefore decay to zero in the large
wavenumber asymptotic limit, remaining bounded even if the root is unstable. Similar
behaviour is found for other values of the parameter a, with the first three roots for
a= 1 having leading-order growth rates

σ
(1)
R ∼−

1+m2

R
k2, σ

(2)
R ∼−

1+m2

2R
k2, σ

(3)
R ∼−

R
F2
, (B 16a−c)

for k� 1, and the expansion of the fourth root begins with the imaginary terms

σ (4) ∼−i(1−G′0)k+
iRG0(1−G′0)µφ̄

F2G′0(1+m2)

1
k
+ · · · . (B 17)

For the final case a> 1, it can be shown that the roots have growth rates

σ
(1)
R ∼−

m2

R
k2a, σ

(2)
R ∼−

m2

2R
k2a, σ

(3)
R ∼−

R
F2
, (B 18a−c)

for k� 1, alongside the asymptotic behaviour

σ (4) ∼−i(1−G′0)k+
iRG0(1−G′0)µφ̄

F2G′0m2

1
k2a−1

+ · · · (B 19)

for the fourth root, and hence the real growth must necessarily remain bounded for all
wavenumbers. This concludes the two-dimensional linear stability analysis, where all
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possible variants of the asymptotic limit |k| = (k2
x + k2

y)
1/2 −→∞ have been covered.

Whilst the full algebraic expressions have sometimes been omitted for simplicity, it
has been shown that, in all cases, the growth rates remain bounded and therefore that
the two-dimensional governing equations are well posed.

All of the above stability analysis has been validated numerically, using time-
dependent solutions of the fully nonlinear equations as described in § 6.2.
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