Manchester Centre for Nonlinear Dynamics

The Manchester Centre for Nonlinear Dynamics is comprised of researchers from the Department of Mathematics and the Department of Physics and Astronomy at the University of Manchester. Research within the group is based upon the application of a combined approach of theoretical modelling, computation and detailed quantitative experimental investigations of nonlinear phenomena.

Granular jets and hydraulic jumps on an inclined planeMulti-component particle-size segregation in shallow granular avalanchesGravity-driven granular free-surface flow around a circular cylinderRaleigh-Taylor instability in a finite cylinderParticle-size segregation in dense granular avalanchesUnderlying asymmetry within particle size segregationSegregation induced finger formation in granular free-surface flows

Latest News: Work at the MCND on the curling of ribbons has been featured in a BBC News article. For more details see Anne Juel's site or our paper in PNAS.

Features

A perforated column can buckle in a complex way when compressed, due to interactions between deformations over the lengthscale of the whole column, bending of the thin ligaments that separate the perforations, and nonlinearity of material response. Read more...

A symmetry breaking pattern switching phenomenon is observed in 2D granular media under compression. When the undeformed configuration on the left is compressed, rigid cylinders (white) form pairs, resulting from the buckling of columns of elastic cylinders (purple).

Attractors from Taylor-Couette flow.

The left one is from a quasiperiodic flow and the right one from a chaotic flow.

Viscous fingering under an elastic membrane.

Above a critical flow rate of air injection into a oil-filled elastic cell, the interface becomes unstable and an unusual fingering pattern develops.

Bubble oscillation in a constricted tube.

The propagation of an air bubble into a constricted channel initially filled by a viscous fluid can lead to oscillations with a well defined spatial period. Read more...