Manchester Centre for Nonlinear Dynamics

The Manchester Centre for Nonlinear Dynamics is comprised of researchers from the Department of Mathematics and the Department of Physics and Astronomy at the University of Manchester. Research within the group is based upon the application of a combined approach of theoretical modelling, computation and detailed quantitative experimental investigations of nonlinear phenomena.

Granular jets and hydraulic jumps on an inclined planeMulti-component particle-size segregation in shallow granular avalanchesGravity-driven granular free-surface flow around a circular cylinderRaleigh-Taylor instability in a finite cylinderParticle-size segregation in dense granular avalanchesUnderlying asymmetry within particle size segregationSegregation induced finger formation in granular free-surface flows

Latest News: Work at the MCND on the curling of ribbons has been featured in a BBC News article. For more details see Anne Juel's site or our paper in PNAS.

Features

A perforated column can buckle in a complex way when compressed, due to interactions between deformations over the lengthscale of the whole column, bending of the thin ligaments that separate the perforations, and nonlinearity of material response. Read more...

Numerical bifurcation tracking.

Contours of axial velocity for the flow past a cylindrical obstacle in a channel (top). A Hopf bifurcation occurs at Re ≈ 92, and the contours of the axial velocity for the critical eigenfunction (bottom) illustrate the complex downstream structure that must be resolved to accurately determine the location of the bifurcation.

Spin-over in a torus.

Snapshots of a simultaneous collisional boundary-layer breakdown in the cross section of a rotating fluid-filled torus following a change in the rotation rate.
View animation...

Viscous fingering under a cellophane sheet.

Air is injected at constant flow rate into an oil-filled elastic cell, coupling a fingering instability to the wrinkling of the cellophane sheet.

Airway reopening.

The reopening of pulmonary airways can occur through the propagation of long air finger. If the occluded elastic tube is initially very strongly collapsed, multiple reopening bubbles such as double-tipped (top) or pointed bubbles (bottom) can occur. Read more...